• ABOUT
    • About INDIGO
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
    • Employment
    • INDIGO Press Releases
    • INDIGO in the News
  • ASSAYS
    • By Receptor
    • By Disease State
      • Overview
      • Anemia & Kidney Disease
      • Autoimmune Disease & Inflammation
      • Cancer
      • Cardiovascular Disease
      • Diabetes
      • Endocrinology
      • NAFLD/NASH
      • Obesity
    • Toxicology Solutions
      • In Vitro Toxicology Platform
      • Gene Expression
      • MDR1 / Human P-Glycoprotein
      • Discovery Toxicology
      • Environmental Monitoring
    • INDIGlo Luciferase Detection Reagent
    • Live Cell Multiplex
    • Ortholog Assays
    • Custom Assay Development
  • TECHNOLOGY
    • Nuclear Receptor Overview
    • Assay Kit Platform & Formats
    • Nuclear Receptor Profiling & Panels
    • Environmental Testing Solutions
    • Growth Factor Receptors
    • upcyte® Hepatocytes
    • FAQ
  • RESOURCES
    • Technical Manuals
    • Safety Data Sheets
    • Scientific Whitepapers from INDIGO
    • Scientific Posters
    • New Research Publications
    • Nuclear Receptor Resource
  • CONTACT US
    • Contact INDIGO
    • Request a Quote
    • Request Information
    • Distributors
    • Terms & Conditions
      • Product Policies
      • Limited Use Disclosures
  • BLOG
Search site...

± α β γ δ Δ ε ζ κ ω ö ® ™ µ

  • ABOUT
    • About INDIGO
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
    • Employment
    • INDIGO Press Releases
    • INDIGO in the News
  • ASSAYS
    • By Receptor
    • By Disease State
      • Overview
      • Anemia & Kidney Disease
      • Autoimmune Disease & Inflammation
      • Cancer
      • Cardiovascular Disease
      • Diabetes
      • Endocrinology
      • NAFLD/NASH
      • Obesity
    • Toxicology Solutions
      • In Vitro Toxicology Platform
      • Gene Expression
      • MDR1 / Human P-Glycoprotein
      • Discovery Toxicology
      • Environmental Monitoring
    • INDIGlo Luciferase Detection Reagent
    • Live Cell Multiplex
    • Ortholog Assays
    • Custom Assay Development
  • TECHNOLOGY
    • Nuclear Receptor Overview
    • Assay Kit Platform & Formats
    • Nuclear Receptor Profiling & Panels
    • Environmental Testing Solutions
    • Growth Factor Receptors
    • upcyte® Hepatocytes
    • FAQ
  • RESOURCES
    • Technical Manuals
    • Safety Data Sheets
    • Scientific Whitepapers from INDIGO
    • Scientific Posters
    • New Research Publications
    • Nuclear Receptor Resource
  • CONTACT US
    • Contact INDIGO
    • Request a Quote
    • Request Information
    • Distributors
    • Terms & Conditions
      • Product Policies
      • Limited Use Disclosures
  • BLOG

Rheum rhaponticum Root Extract Improves Vasomotor Menopausal Symptoms and Estrogen-Regulated Targets in Ovariectomized Rat Model

Print Friendly, PDF & Email

ABSTRACT

Ovarian insufficiency and ovariectomy are characterized by deregulated heat loss mechanisms. Unlike hormone therapy, ERr 731 (a standardized botanical extract of Siberian rhubarb Rheum rhaponticum L. high in rhaponticin) acts like a selective estrogen receptor modulator for ERβ receptors and may offer a higher degree of safety while maintaining the desired efficacy profile. In this study, we examined the relationship between oral administration of ERr 731 and the underlying components of skin vasomotion responses in an ovariectomized (OVX) rat model. ERr 731 dose-dependently reduced tail skin temperature (Tskin) values by an average of 1 °C. The rapid onset of this effect was observed in 1 and 3 mg/kg/day ERr 731 groups as early as day 2 of administration, and remained in place for the duration of the treatment (2 weeks). Substituting ERr 731 after E2 withdrawal helped maintain body temperature similarly to E2 alone, suggesting the usefulness of ERr 731 for replacing existing hormonal therapy in humans. ERr 731 also acted as a highly selective agonist for ERβ in the hypothalamus of OVX rats, as well as in ERα/β cell-based reporter assays. These data validate the OVX/Tskin rat model as a suitable screening platform to evaluate botanical and pharmaceutical treatments of menopause, while providing further evidence for the efficacy of ERr 731 towards alleviating vasomotor menopausal symptoms and improving wellbeing during the menopausal transition.

To read the full publication, click HERE.

Date of publication : 21 January 2021; Int. J. Mol. Sci. 2021, 22(3), 1032

Author Information: Mickey Wilson (1,2), Veera Konda (3), Kathryn Heidt (1,4), Thirumurugan Rathinasabapathy (1,2), Anuradha Desai (3), and Slavko Komarnytsky (1,2)

(1) Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
(2) Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
(3) Metagenics Inc., 9770 44th Ave NW, Gig Harbor, WA 98332, USA
(4) Department of Biology, Catawba College, 2300 W Innes Street, Salisbury, NC 28144, USA

Filed Under: New Publications Tagged With: ERa, ERb, estrogen, estrogen receptor, estrogen receptor beta, Estrogen receptor α

Request a Quote Icon
Search site...
Click to Insert Symbols in Search

α β γ δ Δ ε ζ κ ® ™ µ

Want More Information?

Resource Quick Links

  • Technical Manuals & Product Listing
  • Safety Data Sheets
  • Sample Study Report
  • Study Work Order Form

3006 Research Drive, Suite A1, State College, PA, USA 16801

+1 (814) 234-1919

  • Home
  • Products
  • Request a Quote
  • FAQ

© 2022 INDIGO Biosciences, Inc. All Rights Reserved