• PRODUCTS
    • Assay Kit Platform & Formats
    • Reporter Assays By Receptor
    • Growth Factor Assays
    • Toxicology Kits
      • In Vitro Hepatotoxicity Assay Kit & Screening Services
      • Assay Kits & Services for Gene Expression Profiling
      • Human P-Glycoprotein / MDR1 Drug Interaction Assay Kit & Screening Services
    • Environmental Monitoring Assays
    • Animal Model Assays
    • INDIGlo Luciferase Detection Reagent
    • Live Cell Multiplex
  • SERVICES
    • Reporter Assay Services
    • Nuclear Receptor Profiling & Panels
    • Custom Assay Development
    • Environmental Testing Assays
    • Toxicology in The Drug Discovery and Development Process
  • RESOURCES
    • Nuclear Receptor Overview
    • Disease State Targets
      • Overview
      • Anemia & Kidney Disease
      • Autoimmune Disease & Inflammation
      • Cancer
      • Cardiovascular Disease
      • Diabetes
      • Endocrinology
      • NAFLD/NASH
      • Obesity
    • Articles, Blogs, and Posters
      • New Research Publications
      • Scientific Whitepapers from INDIGO
      • Scientific Posters from INDIGO
      • BLOG
    • Product Literature
      • INDIGO Technical Manuals
      • Product Material Safety Data Sheets
      • upcyte® Hepatocytes
    • FAQ
  • ABOUT
    • About INDIGO
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
    • Employment
    • INDIGO Press Releases
    • INDIGO in the News
  • CONTACT US
    • Contact INDIGO
    • Request a Quote
    • Ordering & Distributors
Search site...

± α β γ δ Δ ε ζ κ ω ö ® ™ µ

  • PRODUCTS
    • Assay Kit Platform & Formats
    • Reporter Assays By Receptor
    • Growth Factor Assays
    • Toxicology Kits
      • In Vitro Hepatotoxicity Assay Kit & Screening Services
      • Assay Kits & Services for Gene Expression Profiling
      • Human P-Glycoprotein / MDR1 Drug Interaction Assay Kit & Screening Services
    • Environmental Monitoring Assays
    • Animal Model Assays
    • INDIGlo Luciferase Detection Reagent
    • Live Cell Multiplex
  • SERVICES
    • Reporter Assay Services
    • Nuclear Receptor Profiling & Panels
    • Custom Assay Development
    • Environmental Testing Assays
    • Toxicology in The Drug Discovery and Development Process
  • RESOURCES
    • Nuclear Receptor Overview
    • Disease State Targets
      • Overview
      • Anemia & Kidney Disease
      • Autoimmune Disease & Inflammation
      • Cancer
      • Cardiovascular Disease
      • Diabetes
      • Endocrinology
      • NAFLD/NASH
      • Obesity
    • Articles, Blogs, and Posters
      • New Research Publications
      • Scientific Whitepapers from INDIGO
      • Scientific Posters from INDIGO
      • BLOG
    • Product Literature
      • INDIGO Technical Manuals
      • Product Material Safety Data Sheets
      • upcyte® Hepatocytes
    • FAQ
  • ABOUT
    • About INDIGO
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
    • Employment
    • INDIGO Press Releases
    • INDIGO in the News
  • CONTACT US
    • Contact INDIGO
    • Request a Quote
    • Ordering & Distributors

Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity

Print Friendly, PDF & Email

ABSTRACT

Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b’s. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.

To read the full article click HERE.

Date of publication: 15 December 2022; PLOS ONE

Author information:  Melissa M. Heintz (1), Jazmine A. Eccles (1), Emily M. Olack , Kristal M. Maner-Smith (2), Eric A. Ortlund (3), William S. Baldwin (1)

(1) Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
(2) Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
(3) Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America

Filed Under: New Publications Tagged With: NAFLD, PPARa, PPARd, PPARg

Request a Quote

Search

Search site...
Click to Insert Symbols in Search

α β γ δ Δ ε ζ κ ® ™ µ

Want More Information?

Resource Quick Links

  • Technical Manuals & Product Listing
  • Safety Data Sheets
  • Sample Study Report
  • Study Work Order Form

3006 Research Drive, Suite A1, State College, PA, USA 16801

+1 (814) 234-1919

  • Terms Conditions
  • Privacy Policy
  • Product Policies
  • Limited Use Disclosure

© 2022 INDIGO Biosciences, Inc. All Rights Reserved