Nuclear Receptor & In Vitro Toxicology Solutions™

Get all the latest news from INDIGO

  • This field is for validation purposes and should be left unchanged.

  • ABOUT
    • About INDIGO
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
    • Employment
    • INDIGO Press Releases
    • INDIGO in the News
  • ASSAYS
    • By Receptor
    • By Disease State
      • Overview
      • Anemia & Kidney Disease
      • Autoimmune Disease & Inflammation
      • Cancer
      • Cardiovascular Disease
      • Diabetes
      • Endocrinology
      • NAFLD/NASH
      • Obesity
    • Toxicology Solutions
      • In Vitro Toxicology Platform
      • Gene Expression
      • MDR1 / Human P-Glycoprotein
      • Discovery Toxicology
      • Environmental Monitoring
    • INDIGlo Luciferase Detection Reagent
    • Live Cell Multiplex
    • Ortholog Assays
    • Custom Assay Development
  • TECHNOLOGY
    • Nuclear Receptor Overview
    • Assay Kit Platform & Formats
    • Nuclear Receptor Profiling & Panels
    • Environmental Testing Solutions
    • Growth Factor Receptors
    • upcyte® Hepatocytes
    • FAQ
  • RESOURCES
    • Technical Manuals
    • Safety Data Sheets
    • Scientific Whitepapers from INDIGO
    • Scientific Posters
    • New Research Publications
    • Nuclear Receptor Resource
  • CONTACT US
    • Contact INDIGO
    • Request a Quote
    • Request Information
    • Distributors
    • Terms & Conditions
      • Product Policies
      • Limited Use Disclosures
  • BLOG

Nuclear Receptor & In Vitro Toxicology Solutions™

Search site...

± α β γ δ Δ ε ζ κ ω ö ® ™ µ

  • ABOUT
    • About INDIGO
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
    • Employment
    • INDIGO Press Releases
    • INDIGO in the News
  • ASSAYS
    • By Receptor
    • By Disease State
      • Overview
      • Anemia & Kidney Disease
      • Autoimmune Disease & Inflammation
      • Cancer
      • Cardiovascular Disease
      • Diabetes
      • Endocrinology
      • NAFLD/NASH
      • Obesity
    • Toxicology Solutions
      • In Vitro Toxicology Platform
      • Gene Expression
      • MDR1 / Human P-Glycoprotein
      • Discovery Toxicology
      • Environmental Monitoring
    • INDIGlo Luciferase Detection Reagent
    • Live Cell Multiplex
    • Ortholog Assays
    • Custom Assay Development
  • TECHNOLOGY
    • Nuclear Receptor Overview
    • Assay Kit Platform & Formats
    • Nuclear Receptor Profiling & Panels
    • Environmental Testing Solutions
    • Growth Factor Receptors
    • upcyte® Hepatocytes
    • FAQ
  • RESOURCES
    • Technical Manuals
    • Safety Data Sheets
    • Scientific Whitepapers from INDIGO
    • Scientific Posters
    • New Research Publications
    • Nuclear Receptor Resource
  • CONTACT US
    • Contact INDIGO
    • Request a Quote
    • Request Information
    • Distributors
    • Terms & Conditions
      • Product Policies
      • Limited Use Disclosures
  • BLOG

Keratinocyte differentiation and upregulation of ceramide synthesis induced by an oat lipid extract via the activation of PPAR pathways

Print Friendly, PDF & Email

ABSTRACT

Activation of peroxisome proliferator-activated receptors (PPARs) has been shown to have an important role in skin barrier function by regulating differentiation and lipid synthesis in keratinocytes. Oat (Avena sativa) has long been used as a soothing agent to relieve skin irritations, and the clinical benefits of topical oat formulations have been proven; however, the mechanistic understanding of oat’s mode of action remains unknown. We investigated whether an oat lipid extract could activate PPARs and subsequently increase epidermal lipid synthesis and differentiation markers. Primary human epidermal keratinocytes and transformed cell lines were treated with PPAR agonists and oat lipid extracts to investigate the PPAR agonism. PPAR target genes and epidermal differentiation markers were analysed using quantitative real-time PCR and HPTLC analysis. Oat lipid extract demonstrated robust dual agonism for PPARα and PPARβ/δ, and increased direct PPAR target gene induction in primary human keratinocytes. In addition, oat oil treatment increased both receptor expression and, consistent with the literature on PPARs, oat oil treatment resulted in a significant upregulation of differentiation genes (involucrin, SPRRs and transglutaminase 1) and ceramide processing genes (β-glucocerebrosidase, sphingomyelinases 3 and ABCA12). Further, oat oil treatment in keratinocytes significantly increased ceramide levels (70%), suggesting a functional translation of PPAR activation by oat oil in keratinocytes. Taken together, these results demonstrate that oat lipids possess robust dual agonistic activities for PPARα and PPARβ/δ, increase their gene expression and induce differentiation and ceramide synthesis in keratinocytes, which can collectively improve skin barrier function.

To read the full article click HERE.

Date of publication: 27 March 2015; Experimental Dermatology

Author information: Su-Hyoun Chon (1); Ruth Tannahill (1); Xiang Yao (2); Michael D. Southall (1); & Apostolos Pappas (1)

(1) Johnson & Johnson Skin Research Center, CPPW, Division of Johnson & Johnson Consumer Companies, Inc., Skillman, NJ, United States
(2) Janssen Pharmaceutical of Johnson & Johnson, San Diego, CA, United States

Filed Under: New Publications Tagged With: PPAR, PPARα, PPARβ, PPARγ

INDIGO Biosciences - The right partner for all your discovery and toxicology needs.
Search site...
Click to Insert Symbols in Search

α β γ δ Δ ε ζ κ ® ™ µ

Want More Information?

Simply fill out this form and we'll be in touch!

Resource Quick Links

  • Technical Manuals & Product Listing
  • Safety Data Sheets
  • Sample Study Report
  • Study Work Order Form

3006 Research Drive, Suite A1, State College, PA, USA 16801

+1 (814) 234-1919

  • Home
  • Products
  • Request a Quote
  • FAQ

© 2022 INDIGO Biosciences, Inc. All Rights Reserved