Cyn Monkey Farnesoid X Receptor (cFXR; nr1h4)
Product Family | Product Number | Product Description | Technical Manual |
C0060 cFXR (nr1h4) |
C00601-32 | Cyn Monkey FXR Reporter Assay System, 3 x 32 assays in 96-well format | Technical Manual |
C00601 | Cyn Monkey FXR Reporter Assay System, 1 x 96-well format assays | Technical Manual |
Also available in: Human, Mouse, Rat, Dog
This Cyn Monkey Farnesoid X Receptor (cFXR) kit is an all-inclusive assay system that includes, in addition to cFXR Reporter Cells, two optimized media for use during cell culture and (optionally) in diluting the test samples, a reference agonist, Luciferase Detection Reagent, a cell culture-ready assay plate, and a detailed protocol.
Cyn Monkey FXR Reporter Cells are prepared using INDIGO’s proprietary CryoMite™ process. This cryo-preservation method yields high cell viability post-thaw, and provides the convenience of immediately dispensing healthy, division-competent reporter cells into assay plates. There is no need for intermediate spin-and-wash steps, viability determinations, or cell titer adjustments.
INDIGO’s assay kits feature a luciferase detection reagent specially formulated to provide stable light emission between 5 and 90+ minutes after initiating the luciferase reaction. Incorporating a 5-minute reaction-rest period ensures that light emission profiles attain maximal stability, thereby allowing assay plates to be processed in batch. By doing so, the signal output from all sample wells, from one plate to the next, may be directly compared within an experimental set.
Kits are offered in different assay formats to accommodate researchers’ needs: 3 x 32 and 1 x 96 assay formats for screening small numbers of test compounds, as well as custom bulk reagents for HTS applications.
Bulk assay reagents can be custom manufactured to accommodate any scale of HTS. Please inquire.
Also available in: Human, Mouse, Rat, Dog
The Farnesoid X Receptor (FXR), also known as NR1H4 is a nuclear hormone receptor with activity similar to that seen in other steroid receptors such as estrogen or progesterone receptor, but more similar in form to PPAR, LXR, and RXR. FXR is expressed at high levels in the liver and intestine. Chenodeoxycholic acid and other bile acids are natural ligands for FXR.
Like other steroid receptors, when activated, FXR translocates to the cell nucleus, forms a heterodimer with RXR and binds to hormone response elements on DNA (FXEs) to elicit expression or transrepression of gene products. One of the primary functions of FXR activation is the suppression of cholesterol 7 alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis from cholesterol. FXR does not directly bind to the CYP7A1 promoter. Rather, FXR induces expression of small heterodimer partner (SHP) which then functions to inhibit transcription of the CYP7A1 gene. In this way a negative feedback pathway is established in which synthesis of bile acids is inhibited when cellular levels are already high.
These Cyn Monkey FXR Reporter Assay Systems utilize non-human mammalian cells engineered to express Cyn Monkey NR1H4 protein, commonly referred to as cFXR.
The principle application of this assay product is in the screening of test samples to quantify functional activities, either agonist or antagonist, that they may exert against the cyn monkey farnesoid x receptor.
For more information about FXR, visit the Nuclear Receptor Resource
Service Assays: Human, Mouse, Rat, Cyn Monkey, Dog
The primary application of INDIGO’s cell-based nuclear receptor assays are to quantitatively assess the bioactivity of a test compound as an agonist (activator) or antagonist (inhibition of an agonist response) of a given receptor. Service assays include a positive control reference compound and ‘vehicle’ control for every experiment. A formal study report and all data files are provided to the client upon completion of the study. To receive a quote for your proposed study, complete & submit the online “Request a Quote” form, or, contact an INDIGO Customer Service Representative to discuss your desired study parameters.
COMPOSITIONS AND METHODS FOR TREATING CHOLESTATIC DISEASE
ABSTRACT The invention provides compositions and methods for use in the treatment and prevention of cholestatic diseases. To read the full Patent, click HERE. Date of publication: 14 January 2021; United States Patent Application 20210008128 Inventor Information: Nandakumar, Madhumitha (Arlington, MA, US), Liou, Alice Peiyu (Somerville, MA, US), Halvorsen, Elizabeth Moritz (Malden, MA, US), Mckenzie,Read More
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
ABSTRACT Intestinal health relies on the immunosuppressive activity of CD4+ regulatory T (Treg) cells. Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1). Products of microbial fermentation including butyrate facilitate the generationRead More
Characterization of EDP-305, a Highly Potent and Selective Farnesoid X Receptor Agonist, for the Treatment of Non-alcoholic Steatohepatitis
ABSTRACT Non-alcoholic steatohepatitis (NASH), characterized by hepatocyte injury, inflammation, and fibrosis, is the maincause of chronic liver disease in the Western world. There are currently no approved pharmacological therapies for NASH,underscoring the urgent need for effective treatments. The farnesoid X receptor (FXR) has emerged as an attractive target for the treatment of metabolic and chronicRead More
Profiling Drug Activity of Human and Ortholog Xenobiotic-Sensing Receptors: PXR, CAR, AhR, and FXR
View Full Size Research conducted by: Koji Toyokawa (1), Ewa Maddox (1), Jack Vanden Huevel (1,2), & Bruce Sherf (1) (1) INDIGO Biosciences, Inc., 1981 Pine Hall Rd, State College, PA, USA (2) Center for Molecular Toxicology and Carcinogenesis, 325 Life Sciences Building, Penn State University, University Park, PA 16802, USA Date of Publication: 2017
Differential modulation of FXR activity by chlorophacinone and ivermectin analogs
ABSTRACT Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10 K chemical collection. In the present study, weRead More
Effects of Munitions Compounds on Xenobiotic-Activated Nuclear Receptors and Signaling Pathways
ABSTRACT Exposure to certain munitions compounds is know to alter physiological functions in test organisms, however little is known about their molecular and cellular effects. Several nuclear receptors are regulated by xenobiotic compounds. These nuclear receptors belong to a class of ligand-activated transcription factors that, when heterodimerized with RXRa and bound to their respective DNARead More
Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation
ABSTRACT The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17–producing CD4+ Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurringRead More
Activation of farnesoid-X-receptor (FXR) by bioactive lipids
View Full Size Research conducted by: Jerry Thompson (1), Jun Zhang (1), & Jack Vanden Huevel (1,2) (1) Center for Nutrigenomics, Penn State University, University Park, PA 16802, USA (2) INDIGO Biosciences, Inc., 1981 Pine Hall Rd, State College, PA, USA Date of Publication: March 2010
Activation of Farnesoid-X-Receptor (FXR) by Bioactive Lipids
ABSTRACT FXR is a nuclear receptor that has gained a great deal of interest in terms of its biological role and potential as therapeutic target. Activating FXR increases transcription of genes that are geared toward preventing synthesis and uptake and promoting excretion of bile acids. One effect of FXR activation is decreased expression of Cyp7A1Read More