Cyn Monkey Peroxisome Proliferator-Activated Receptor Alpha (cPPARα; nr1c1)
Product Family | Product Number | Product Description | Technical Manual |
C0011 cPPARα (nr1c1) |
C00111-32 | Cyn Monkey PPARα Reporter Assay System, 3 x 32 assays in 96-well format | |
C00111 | Cyn Monkey PPARα Reporter Assay System, 1 x 96-well format assays |
Also available in: Human, Mouse, Rat, Dog
This Cynomolgus Monkey Peroxisome Proliferator-Activated Receptor Alpha (cPPARα) kit is an all-inclusive assay system that includes, in addition to cPPARα Reporter Cells, two optimized media for use during cell culture and (optionally) in diluting the test samples, a reference agonist, Luciferase Detection Reagent, a cell culture-ready assay plate, and a detailed protocol.
cPPARα Reporter Cells are prepared using INDIGO’s proprietary CryoMite™ process. This cryo-preservation method yields high cell viability post-thaw, and provides the convenience of immediately dispensing healthy, division-competent reporter cells into assay plates. There is no need for intermediate spin-and-wash steps, viability determinations, or cell titer adjustments.
INDIGO’s assay kits feature a luciferase detection reagent specially formulated to provide stable light emission between 5 and 90+ minutes after initiating the luciferase reaction. Incorporating a 5-minute reaction-rest period ensures that light emission profiles attain maximal stability, thereby allowing assay plates to be processed in batch. By doing so, the signal output from all sample wells, from one plate to the next, may be directly compared within an experimental set.
Kits are offered in different assay formats to accommodate researchers’ needs: 3x 32 and 1x 96 assay formats for screening small numbers of test compounds, as well as custom bulk reagents for HTS applications.
Bulk assay reagents can be custom manufactured to accommodate any scale of HTS. Please inquire.
Also available in: Human, Mouse, Rat, Dog
INDIGO’s Cynomolgus Monkey Peroxisome Proliferator-Activated Receptor Alpha (cPPARα) Reporter Assay System utilizes proprietary mammalian cells engineered to provide constitutive, high-level expression of Cyn Monkey PPARα (nr1c1), a ligand-dependent transcription factor. Because these cells incorporate a responsive luciferase reporter gene, quantifying expressed luciferase activity provides a sensitive surrogate measure of cPPARα activity in treated cells. The primary application of this reporter assay system is in the screening of test samples to quantify functional activity, either agonist or antagonist, that they may exert against cynomolgus monkey PPARα.
For more information on PPARα, visit the Nuclear Receptor Resource.
Service Assays: Human, Mouse, Rat, Cyn Monkey, Dog
The primary application of INDIGO’s cell-based nuclear receptor assays are to quantitatively assess the bioactivity of a test compound as an agonist (activator) or antagonist (inhibition of an agonist response) of a given receptor. Service assays include a positive control reference compound and ‘vehicle’ control for every experiment. A formal study report and all data files are provided to the client upon completion of the study. To receive a quote for your proposed study, complete & submit the online “Request a Quote” form or contact an INDIGO Customer Service Representative to discuss your desired study parameters.
AGONISTS OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA AND METHODS OF USE
ABSTRACT Benzyl derivative compounds having peroxisome proliferator-activated receptor α (PPARα) agonistic activity, compositions containing such compounds, and methods of their use in enhancing PPARα activity for treating diseases and/or conditions involving inflammation and/or angiogenesis, particularly ocular diseases and/or conditions such as but not limited to retinal inflammation, retinal neovascularization, retinal vascular leakage, retinopathy of prematurity,Read More
Evolution of a 4-Benzyloxy-benzylamino Chemotype to Provide Efficacious, Potent, and Isoform Selective PPARα Agonists as Leads for Retinal Disorders
ABSTRACT Peroxisome proliferator-activated receptor alpha (PPARα) is expressed in retinal Müller cells, endothelial cells, and in retinal pigment epithelium; agonism of PPARα with genetic or pharmacological tools ameliorates inflammation, vascular leakage, neurodegeneration, and neovascularization associated with retinal diseases in animal models. As such, PPARα is a promising drug target for diabetic retinopathy and age-related macularRead More
Adverse Outcome Pathway on antagonist binding to PPARa leading to body-weight loss
ABSTRACT The present AOP describes antagonistic chemical binding to the peroxisome proliferator-activated receptor α (PPARα), resulting in preferential binding a co-repressor to the overall PPARα signalling complex causing a chain of events that includes: antagonism of PPARα nuclear signalling, decreased transcriptional expression of PPARα-regulated genes that support energy metabolism, inhibited metabolic energy production (decreased fattyRead More
Discovery of potent and selective PPARα/δ dual antagonists and initial biological studies Author links open overlay panel
ABSTRACT We previously published on the design and synthesis of novel, potent and selective PPARα antagonists suitable for either i.p. or oral in vivo administration for the potential treatment of cancer. Described herein is SAR for a subsequent program, where we set out to identify selective and potent PPARα/δ dual antagonist molecules. Emerging literature indicates that bothRead More
Comparative Evaluation of Gemcabene and Peroxisome Proliferator–Activated Receptor Ligands in Transcriptional Assays of Peroxisome Proliferator–Activated Receptors: Implication for the Treatment of Hyperlipidemia and Cardiovascular Disease
ABSTRACT Gemcabene, a late-stage clinical candidate, has shown efficacy for LDL-C, non-HDL cholesterol, apoB, triglycerides, and hsCRP reduction, all risk factors for cardiovascular disease. In rodents, gemcabene showed changes in targets, including apoC-III, apoA-I, peroxisomal enzymes, considered regulated through peroxisome proliferator–activated receptor (PPAR) gene activation, suggesting a PPAR-mediated mechanism of action for the observed hypolipidemic effects observedRead More
Structure-guided evolution of a 2-phenyl-4-carboxyquinoline chemotype into PPARα selective agonists: New leads for oculovascular conditions
ABSTRACT Small molecule agonism of PPARα represents a promising new avenue for the development of non-invasive treatments for oculovascular diseases like diabetic retinopathy and age-related macular degeneration. Herein we report initial structure–activity relationships for the newly identified quinoline-based PPARα agonist, Y-0452. Preliminary computational studies led to the hypothesis that carboxylic acid transposition and deconstruction ofRead More
Pyrazolone Compounds and Uses Thereof: Patent Application
ABSTRACT The invention disclosed herein is directed to compounds of Formula I and pharmaceutically acceptable salts thereof, which are useful in the treatment of prostate, breast, colon, pancreatic, human chronic lymphocytic leukemia, acute or chronic myeloid leukemia, melanoma, and other cancers. The invention also includes pharmaceutical compositions comprising a therapeutically effective amount of compound ofRead More
Sedaxane—Use of Nuclear Receptor Transactivation Assays, Toxicogenomics, and Toxicokinetics as Part of a Mode of Action Framework for Rodent Liver Tumors
ABSTRACT Experimental data demonstrate a mode of action (MOA) for liver tumors in male rats and mice treated with sedaxane that starts with activation of CAR, followed by altered expression of CAR-responsive genes, increased cell proliferation, and eventually clonal expansion of preneoplastic cells, leading to the development of altered foci and tumors. This MOA isRead More
GPR40 partial agonist MK-2305 lower fasting glucose in the Goto Kakizaki rat via suppression of endogenous glucose production
ABSTRACT GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partialRead More
In vitro and in vivo pharmacology of NXT629, a novel and selective PPARα antagonist
ABSTRACT Peroxisome-proliferator activated receptors (PPAR) are members of the nuclear hormone receptor superfamily which regulate gene transcription. PPARα is a key regulator of lipid homeostasis and a negative regulator of inflammation. Under conditions of metabolic stress such as fasting or glucose deprivation, PPARα is upregulated in order to control gene expression necessary for processing alternateRead More