Gene Expression: Nuclear Receptors
INTRODUCTION There are four main classes of receptors, Ion channels, G-protein coupled (GPCR), receptor tyrosine kinase and soluble (also called intracellular) receptors. The first three have ligands that are mainly present in the extracellular space (water soluble ligands). The binding of ligand causes a change in the shape/function of the protein that generates a signalRead More
Development and characterization of novel and selective inhibitors of cytochrome P450 CYP26A1, the human liver retinoic acid hydroxylase
ABSTRACT Cytochrome P450 CYP26 enzymes are responsible for all-trans-retinoic acid (atRA) clearance. Inhibition of CYP26 enzymes will increase endogenous atRA concentrations and is an attractive therapeutic target. However, the selectivity and potency of the existing atRA metabolism inhibitors towards CYP26A1 and CYP26B1 is unknown, and no selective CYP26A1 or CYP26B1 inhibitors have been developed. HereRead More
Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor
ABSTRACT Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoicRead More
Examination of Retinoid-like Compounds for Human RXRs, RARs, and RORs
View Full Size Research conducted by: Prajakta Albrecht (1), Koji Toyokawa (1), Ewa Maddox (1), Palmer Cramer (1), Jack Vanden Huevel (1,2), & Bruce Sherf (1) (1) INDIGO Biosciences, Inc., 1981 Pine Hall Rd, State College, PA, USA (2) Center for Molecular Toxicology and Carcinogenesis, 325 Life Sciences Building, Penn State University, University Park, PA 16802,Read More
Examination of Specificity of Retinoid-like Compounds for Human RXRs, RARs, and RORs
ABSTRACT Vitamin A (retinol) and its metabolites play many physiological roles including cell differentiation, cell proliferation, energy homeostasis, circadian rhythm and immune response. Vitamin A and its metabolites are known to act through retinoid acid receptors (RARs), retinoid-related orphan receptors (RORs) and retinoid x receptors (RXRs). These receptors are also important drug targets, although theRead More