Nuclear Receptor & In Vitro Toxicology Solutions™

Get all the latest news from INDIGO

  • This field is for validation purposes and should be left unchanged.
  • HOME
  • ABOUT
    • About
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
  • PRODUCTS
    • Assays
    • Ortholog Assays
    • Growth Factor Receptors
    • In Vitro Toxicology Platform
    • MDR1 / Human P-Glycoprotein
    • Gene Expression
    • NASH Nuclear Receptors For Research
    • Disease States
    • Live Cell Multiplex
    • Custom Assay Development
  • TECHNICAL
    • Nuclear Receptor Profiling & Panels
    • Assay Kit Platform & Formats
    • FAQ
    • Discovery Toxicology
    • upcyte® Hepatocytes
    • Technical Manuals & Product Listing
    • Safety Data Sheets
    • Product Policies
    • Terms & Conditions
    • Limited Use Disclosures
  • CONTACT US
    • Contact INDIGO
    • Request Information
    • Request a Quote
    • Employment
    • Distributors
  • RESOURCES
    • Blog
    • Nuclear Receptor Resource
    • Scientific Whitepapers from INDIGO
    • New Research Publications
    • Scientific Posters
    • INDIGO Press Releases
    • INDIGO in the News

Nuclear Receptor & In Vitro Toxicology Solutions™

Search site...

± α β γ δ Δ ε ζ κ ω ö ® ™ µ

  • HOME
  • ABOUT
    • About
    • Why INDIGO
    • Key Personnel
      • Board of Directors & Advisors
      • Management
  • PRODUCTS
    • Assays
    • Ortholog Assays
    • Growth Factor Receptors
    • In Vitro Toxicology Platform
    • MDR1 / Human P-Glycoprotein
    • Gene Expression
    • NASH Nuclear Receptors For Research
    • Disease States
    • Live Cell Multiplex
    • Custom Assay Development
  • TECHNICAL
    • Nuclear Receptor Profiling & Panels
    • Assay Kit Platform & Formats
    • FAQ
    • Discovery Toxicology
    • upcyte® Hepatocytes
    • Technical Manuals & Product Listing
    • Safety Data Sheets
    • Product Policies
    • Terms & Conditions
    • Limited Use Disclosures
  • CONTACT US
    • Contact INDIGO
    • Request Information
    • Request a Quote
    • Employment
    • Distributors
  • RESOURCES
    • Blog
    • Nuclear Receptor Resource
    • Scientific Whitepapers from INDIGO
    • New Research Publications
    • Scientific Posters
    • INDIGO Press Releases
    • INDIGO in the News

In vitro and in vivo pharmacology of NXT629, a novel and selective PPARα antagonist

Print Friendly, PDF & Email

ABSTRACT

Peroxisome-proliferator activated receptors (PPAR) are members of the nuclear hormone receptor superfamily which regulate gene transcription. PPARα is a key regulator of lipid homeostasis and a negative regulator of inflammation. Under conditions of metabolic stress such as fasting or glucose deprivation, PPARα is upregulated in order to control gene expression necessary for processing alternate fuel sources (e.g. fatty acid oxidation) and thereby promote maintenance of cell viability. Clinically, PPARα expression is upregulated in diseased tissues such as melanoma, chronic lymphocytic leukemia, ovarian and prostate cancer. This may allow for cellular proliferation and metastasis. Importantly, genetic knockouts of PPARα have been shown to be protected against tumor growth in a variety of syngeneic tumors models. We hypothesized that a potent and selective PPARα antagonist could represent a novel cancer therapy. Early in our discovery research, we identified NXT629 (Bravo et al., 2014). Herein we describe the pharmacology of NXT629 and demonstrate that it is a potent and selective PPARα antagonist. We identify NXT629 as a valuable tool for use in in vivo assessment of PPARα due to its good systemic exposure following intraperitoneal injection. We explore the in vivo pharmacology of NXT629 and demonstrate that it is efficacious in pharmacodynamic models that are driven by PPARα. Finally, we probe the efficacy of NXT629 in disease models where PPARα knockouts have shown to be protected. We believe that PPARα antagonists will be beneficial in diseases such as ovarian cancer and melanoma where PPARα and fatty acid oxidation may be involved.

To read the full article click HERE.

Date of publication: 5 May 2017 (Online); European Journal of Pharmacology

Author information: Karin J. Stebbins (1); Alex R. Broadhead (1); Geraldine Cabrera (1); Lucia D. Correa (1); Davorka Messmer (1); Richard Bundey (1); Christopher Baccei (1); Yaldo Bravo (1); Austin Chen (1); Nicholas S. Stock (1); Peppi Prasit (1); & Daniel S. Lorrain (1)

(1) Inception Sciences, 5871 Oberlin Drive, Suite 100, San Diego, CA 92121

Filed Under: New Publications Tagged With: fatty acid oxidation, in vitro pharmacology, PPAR, PPARα, PPARα antagonist

INDIGO Biosciences - The right partner for all your discovery and toxicology needs.
Search site...
Click to Insert Symbols in Search

α β γ δ Δ ε ζ κ ® ™ µ

Want More Information?

Simply fill out this form and we'll be in touch!

Product Resources

  • Technical Manuals & Product Listing
    • Manuals & Listings: Other Kits
  • Assay Kit Platform & Formats
  • Request a Quote
  • Sample Study Report
  • Study Work Order Form
NRR - Nuclear Receptor Resource

3006 Research Drive, Suite A1, State College, PA, USA 16801

+1 (814) 234-1919

  • Home
  • Products
  • Request a Quote
  • FAQ

© 2020 INDIGO Biosciences, Inc. All Rights Reserved