

The Nuclear Receptor Experts™

Human Pregnane X Receptor (NR1I2, PXR, SXR) Reporter Assay System

96-well Format Assays Product # IB07001

Technical Manual (version 7.1)

www.indigobiosciences.com

1981 Pine Hall Road, State College, PA, 16801, USA

Customer Service: 814-234-1919; FAX 814-272-0152 customerserv@indigobiosciences.com

Technical Service: 814-234-1919 techserv@indigobiosciences.com

Human PXR Reporter Assay System 96-well Format Assays

I. Description	
The Assay System	3
The Assay Chemistry	3
Preparation of Test Compounds	4
Considerations for Automated Dispensing	4
Assay Scheme	4
Assay Performance	5
II. Product Components & Storage Conditions	6
III. Materials to be Supplied by the User	6
IV. Assay Protocol	
A word about Antagonist-mode assay setup	7
DAY 1 Assay Protocol	7
■ DAY 2 Assay Protocol	9
V. Related Products	10
VI. Limited Use Disclosures	10
APPENDIX 1: Example Scheme for Serial Dilution	11

I. Description

The Assay System

This assay product utilizes proprietary human cells engineered to provide constitutive, high-level expression of the **Human Pregnane X Receptor** (NR1I2), a ligand-dependent transcription factor commonly referred to as **PXR**. PXR is also known as the Steroid and Xenobiotic sensing nuclear receptor (**SXR**).

INDIGO's Reporter Cells express a hybrid form of human PXR. The N-terminal sequence encoding the PXR DNA binding domain (DBD) has been substituted with that of the yeast GAL4-DBD. The native PXR ligand binding domain (LBD) and other C-terminal domains remain intact and functional. Ligand interaction activates the receptor, causing it to binds to the GAL4 DNA binding sequence, which is functionally linked to a resident luciferase reporter gene. Thus, quantifying changes in luciferase activity in the treated reporter cells provides a sensitive surrogate measure of the changes in PXR activity. The principle application of this reporter assay system is in the screening of test samples to quantify any functional activity, either agonist or antagonist, that they may exert against human PXR.

PXR Reporter Cells are prepared using INDIGO's proprietary **CryoMite**TM process. This cryo-preservation method yields exceptional cell viability post-thaw, and provides the convenience of immediately dispensing healthy, division-competent reporter cells into assay plates. There is no need for cumbersome intermediate treatment steps such as spin-and-rinse of cells, viability determinations, or cell titer adjustments prior to assay setup.

INDIGO Bioscience's Nuclear Receptor Reporter Assays are all-inclusive cell-based assay systems. In addition to PXR Reporter Cells, this kit provides two optimized media for use during cell culture and in diluting the user's test samples, a reference agonist, Luciferase Detection Reagent, and a cell culture-ready assay plate.

The Assay Chemistry

INDIGO's nuclear receptor reporter assay systems capitalize on the extremely low background, high-sensitivity, and broad linear dynamic range of bio-luminescence reporter gene technology.

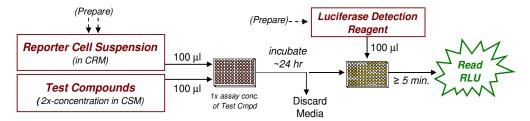
Reporter Cells incorporate the cDNA encoding beetle luciferase, a 62 kD protein originating from the North American firefly (*Photinus pyralis*). Luciferase catalyzes the mono-oxidation of D-luciferin in a Mg⁺²-dependent reaction that consumes O₂ and ATP as co-substrates, and yields as products oxyluciferin, AMP, PP_i, CO₂, and photon emission. Luminescence intensity of the reaction is quantified using a luminometer, and is reported in terms of Relative Light Units (RLU's).

INDIGO's Nuclear Receptor Assay Systems feature a luciferase detection reagent specially formulated to provide stable light emission between 5 and 90+ minutes after initiating the luciferase reaction. Incorporating a 5 minute reaction-rest period ensures that light emission profiles attain maximal stability, thereby allowing assay plates to be processed in batch. By doing so, the signal output from all sample wells, from one plate to the next, may be directly compared within an experimental set.

Preparation of Test Compounds

Most commonly, test compounds are solvated at high-concentration in DMSO, and these are stored as master stocks. Master stocks are then diluted to appropriate working concentrations immediately prior to setting up the assay. Users are advised to dilute test compounds to 2x-concentration stocks using **Compound Screening Medium (CSM)**, as described in *Step 2* of the **Assay Protocol**. This method avoids the adverse effects of introducing high concentrations of DMSO into the assay. The final concentration of total DMSO carried over into assay reactions should never exceed 0.4%.

NOTE: CSM is formulated to help stabilize hydrophobic test compounds in the aqueous environment of the assay mixture. Nonetheless, high concentrations of extremely hydrophobic test compounds diluted in CSM may lack long-term stability and/or solubility, especially if further stored at low temperatures. Hence, it is recommended that test compound dilutions are prepared in CSM immediately prior to assay setup, and are considered to be 'single-use' reagents.


Considerations for Automated Dispensing

When processing a small number of assay plates, first carefully consider the dead volume requirement of your dispensing instrument before committing assay reagents to its setup. In essence, "dead volume" is the volume of reagent that is dedicated to the instrument; it will *not* be available for final dispensing into assay wells. The following Table provides information on reagent volume requirements, and available excesses.

Stock Reagent & Volume provided	Volume to be Dispensed (96-well plate)	Excess rgt. volume available for instrument dead volume
Reporter Cell Suspension 12 ml (prepared from kit components)	100 μl / well 9.6 ml / plate	~ 2.4 ml
LDR 12 ml (prepared from kit components)	100 μl / well 9.6 ml / plate	~ 2.4 ml

Assay Scheme

Figure 1. Assay workflow. *In brief*, Reporter Cells are dispensed into wells of the assay plate and then immediately dosed with the user's test compounds. Following 22 -24 hr incubation, treatment media are discarded and prepared Luciferase Detection Reagent (LDR) is added. Light emission from each assay well is quantified using a plate-reading luminometer.

Assay Performance

Human PXR (NR1I2): Agonist assays

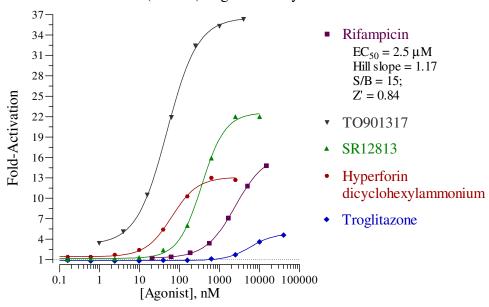


Figure 2. Agonist dose-response analyses of Human PXR.

Performance of the human PXR assay using the reference agonists Rifampicin (provided), Hyperforin dicyclohexylammonium (Enzo Life Sciences), TO901317(Cayman Chemical), SR12813 (Tocris), and Troglitazone (Cayman Chemical). Luminescence was quantified using a GloMax-Multi+ luminometer (Promega). Average relative light units (RLU) and corresponding standard deviation (SD) values were determined for each treatment concentration ($n \ge 6$). Fold-activation and Z' values were calculated as described by Zhang, *et al.* (1999)¹. Non-linear regression and EC₅₀ analyses were performed using GraphPad Prism software. High Z' scores confirm the robust performance of this assay, and it's suitability for HTS¹.

$$Z' = 1-[3*(SD^{Control} + SD^{Background}) / (RLU^{Control} - RLU^{Background})]$$

¹ Zhang JH, Chung TD, Oldenburg KR. (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen.:**4**(2), 67-73.

II. Product Components & Storage Conditions

This Human PXR Reporter Assay System contains materials to perform assays in a single collagen-coated 96-well assay plate.

The aliquot of PXR Reporter Cells is provided as a single-use reagent. Once thawed, reporter cells can NOT be refrozen or maintained in extended culture with any hope of retaining downstream assay performance. Therefore, extra volumes of these reagents should be discarded after assay setup.

Assay kits are shipped on dry ice. Upon receipt, individual kit components may be stored at the temperatures indicated on their respective labels. Alternatively, the entire kit may be further stored at -80° C.

To ensure maximal viability, "Reporter Cells" must be maintained at -80°C until immediately prior to use.

The date of product expiration is printed on the Product Qualification Insert (PQI) enclosed with each kit.

Kit Components	Amount	Storage Temp.
• PXR Reporter Cells	1 x 2.0 mL	-80°C
• Cell Recovery Medium (CRM)	1 x 10.5 mL	-20°C
• Compound Screening Medium (CSM)	1 x 35 mL	-20°C
Rifampicin, 30 mM (in DMSO) (reference agonist for PXR)	1 x 30 μL	-20°C
Detection Substrate	1 x 6.0 mL	-80°C
• Detection Buffer	1 x 6.0 mL	-20°C
• 96-well, <i>collagen-coated</i> assay plate (white, sterile, cell-culture ready)	1	-20°C

NOTE: This PXR Assay System contains one 96-well assay plate in which the assay wells have been collagen-coated and dried; the assay plate should be <u>stored frozen</u> (-20°C or colder) until use.

III. Materials to be Supplied by the User

The following materials must be provided by the user, and should be made ready prior to initiating the assay procedure:

DAY 1

- cell culture-rated laminar flow hood.
- 37°C, humidified 5% CO₂ incubator for mammalian cell culture.
- 37°C water bath.
- 70% alcohol wipes
- 8- or 12-channel electronic, repeat-dispensing pipettes & sterile tips
- disposable media basins, sterile.
- sterile multi-channel media basins (such as the Heathrow Scientific "Dual-Function Solution Basin"), *or* deep-well plates, *or* appropriate similar vessel for generating dilution series of reference compound(s) and test compound(s).
- antagonist reference compound (optional).

DAY 2 plate-reading luminometer.

IV. Assay Protocol

Review the entire Assay Protocol before starting. Completing the assay requires an overnight incubation. *Steps 1-8* are performed on **Day 1**, requiring less than 2 hours to complete. *Steps 9-15* are performed on **Day 2**, and require less than 1 hour to complete.

A word about Antagonist-mode assay setup

Receptor inhibition assays expose the Reporter Cells to a constant, sub-maximal concentration (typically between $EC_{50} - EC_{85}$) of a known agonist AND the test compound(s) to be evaluated for antagonist activity. This PXR Reporter Assay System kit includes a 30 mM stock solution of **Rifampicin**, a low-potency agonist of PXR that may be used to setup antagonist-mode assays. 5 μ M Rifampicin typically approximates EC_{80} in this reporter assay. Hence, it presents a reasonable <u>assay</u> concentration of agonist to be used when screening test compounds for inhibitory activity.

We find that adding the reference agonist to the bulk suspension of Reporter Cells (*i.e.*, prior to dispensing into assay wells) is the most efficient and precise method of setting up antagonist assays, and it is the method presented in *Step 5b* of the following protocol. Note that, in *Step 6*, 100 μ l of treatment media is combined with 100 μ l of pre-dispensed [Reporter Cells + agonist]. Consequently, one must prepare the bulk suspension of Reporter Cells to contain a 2x-concentration of the reference agonist. **APPENDIX 1** provides a dilution scheme that may be used as a guide when preparing cell suspension supplemented with a desired 2x-concentration of agonist.

DAY 1 Assay Protocol: All steps must be performed using proper aseptic technique.

- **1.**) Remove **Cell Recovery Medium (CRM)** and **Compound Screening Medium (CSM)** from freezer storage and thaw in a 37°C water bath.
- **2.) Prepare dilutions of treatment compounds:** Prepare Test Compound treatment media for *Agonist-* or *Antagonist-mode* screens.

The final concentration of total DMSO carried over into assay reactions should never exceed 0.4%.

Note that, in *Step 6*, 100 µl of the prepared treatment media is added into assay wells that have been pre-dispensed with 100 µl of Reporter Cells. Hence, to achieve the desired *final* assay concentrations one must prepare treatment media with a 2x-concentration of the test and reference material(s). Use **CSM** to prepare the appropriate dilution series. Manage dilution volumes carefully. This assay kit provides 35 ml of CSM.

Preparing the positive control: This PXR Reporter Assay System kit includes a 30 mM stock solution of **Rifampicin**, a commonly cited (but low-potency) reference agonist of human PXR. We find that the following 7-point treatment series, prepared in serial 3-fold decrements, provides a suitable dose-response: 30.0, 10.0, 3.33, 1.11, 0.370, 0.123 and 0.0412 μ M (final assay concentrations), and including a 'no treatment' control. **APPENDIX 1** provides an example for generating such a dilution series.

3.) Rapid Thaw of the Reporter Cells: *First*, retrieve the tube of **CRM** from the 37°C water bath and sanitize the outside surface with a 70% ethanol swab.

Second, retrieve **Reporter Cells** from -80°C storage and, without delay, perform a rapid thaw of the frozen cells by transferring a 10 ml volume of the pre-warmed CRM into the tube of frozen cells. Recap the tube of Reporter Cells and immediately place it in a 37°C water bath for 5 - 10 minutes. The resulting volume of cell suspension will be 12 ml.

4.) Retrieve the tube of Reporter Cell Suspension from the water bath and sanitize the outside surface of the tube with a 70% alcohol swab.

5.) *a. Agonist*-mode assays. Gently invert the tube of Reporter Cells several times to disperse cell aggregates and gain an homogenous cell suspension. Without delay, dispense $100 \mu l$ of cell suspension into each well of the Assay Plate.

~ or ~

- **b.** Antagonist-mode assays. Gently invert the tube of Reporter Cells several times to disperse any cell aggregates, and to gain an homogenous cell suspension. Supplement the bulk suspension of Reporter Cells with the desired $\underline{2x\text{-concentration}}$ of reference agonist (refer to "A word about antagonist-mode assay setup", pg. 7). Dispense $\underline{100 \ \mu l}$ of cell suspension into each well of the Assay Plate.
 - *NOTE 5.1:* Take special care to prevent cells from settling during the dispensing period. Allowing cells to settle during the transfer process, and/or lack of precision in dispensing uniform volumes across the assay plate *will* cause well-to-well variation (= increased Standard Deviation) in the assay.
 - NOTE 5.2: Users sometimes prefer to examine the reporter cells using a microscope. If so, the extra volume of cell suspension provided with each kit may be dispensed into a clear 96-well collagen-coated plate, treated +/- test compounds as desired, and incubated overnight in identical manner to those reporter cells contained in the white assay plate.
- **6.)** Dispense $\underline{100 \, \mu l}$ of 2x-concentration treatment media into appropriate assay wells.
- 7.) Transfer the assay plate into a 37°C, humidified 5% CO₂ incubator for <u>22 24 hours</u>.
 NOTE: Ensure a high-humidity (≥ 85%) environment within the cell culture incubator. This is critical to prevent the onset of deleterious "edge-effects" in the assay plate.
- **8.**) For greater convenience on Day 2, retrieve **Detection Substrate** *and* **Detection Buffer** from freezer storage and place them in a dark refrigerator (4°C) to thaw overnight.

DAY 2 Assay Protocol: Subsequent manipulations do *not* require special regard for aseptic technique, and may be performed on a bench top.

9.) 30 minutes before intending to quantify PXR activity, remove **Detection Substrate** and **Detection Buffer** from the refrigerator and place them in a low-light area so that they may equilibrate to room temperature. Once at room temperature, gently invert each tube several times to ensure homogenous solutions.

NOTE: Do NOT actively warm Detection Substrate above room temperature. If these solutions were not allowed to thaw overnight at 4°C, use a room temperature water bath to expedite thawing.

- **10.**) Set the plate-reader to "luminescence" mode. Set the instrument to perform a single <u>5 second</u> "plate shake" prior to reading the first assay well. Read time may be set to 0.5 second (500 mSec) per well, *or less*.
- **11.**) *Immediately before proceeding to Step 12*, transfer the entire volume of Detection Buffer into the vial of Detection Substrate, thereby generating a <u>12 ml</u> volume of **Luciferase Detection Reagent (LDR)**. Mix gently to avoid foaming.
- **12.**) Following 22 24 hours of incubation discard all media contents by ejecting it into an appropriate waste container. *Gently* tap the inverted plate onto a clean absorbent paper towel to remove residual droplets. Cells will remain tightly adhered to well bottoms.
- 13.) Add $\underline{100 \,\mu l}$ of **LDR** to each well of the assay plate. Allow the assay plate to rest at room temperature for at least $\underline{5 \, \text{minutes}}$. Do not shake the assay plate during this period.
- 14.) Quantify luminescence.

V. Related Products

Human PXR Assay Kit Products	
Product No.	Product Descriptions
IB07001-32	3x 32 Human PXR assays; strip-wells in 96-well plate frame
IB07001	1x 96-well format Human PXR assays
IB07002	1x 384-well format Human PXR assays
Bulk assay reagents may be custom manufactured to accommodate any scale of HTS. Please Inquire.	

Rat PXR Assay Kit Products		
Product No.	Product Descriptions	
R07001-32	3x 32 Rat PXR assays; strip-wells in 96-well plate frame	
R07001	1x 96-well format Rat PXR assays	

LIVE Cell Multiplex (LCM) Assay Products	
Product No.	Product Descriptions
LCM-01	Reagents to perform 96 Live Cell Assays in 1x96-well, or 2x48-well, or 3x32-well assay plate formats
LCM-05	Reagents in 5x-bulk volume to perform 480 Live Cell Assays in any combination of 1x96-, 2x48-, or 3x32-well assay plate formats
LCM-10	Reagent in 10x-bulk volume to perform 960 Live Cell Assays in any combination of 1x96-, 2x48-, or 3x32-well assay plate formats

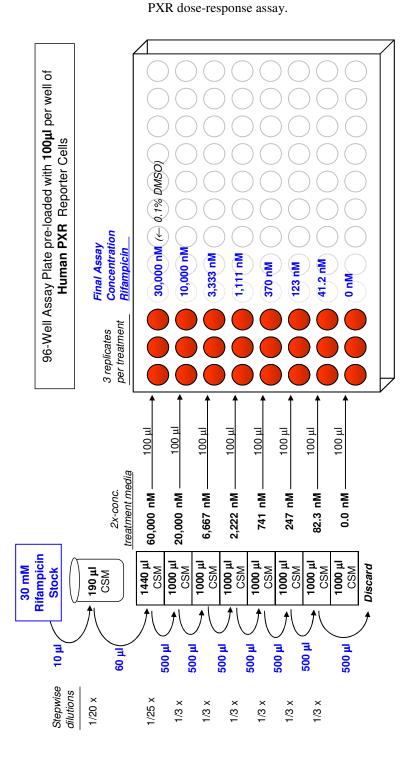
Please refer to INDIGO Biosciences website for updated product offerings.

www.indigobiosciences.com

VI. Limited Use Disclosures

The method of recombinant expression of the steroid and xenobiotic sensing nuclear receptor (SXR) is the subject of U.S. Patent 6,756,491. INDIGO Biosciences, Inc. has entered into a sub-license agreement with Puracyp, Inc. (Carlsbad, CA) conferring the right to utilize SXR / PXR sequences to independently develop assay kit products and services.

Products commercialized by INDIGO Biosciences, Inc. are for RESEARCH PURPOSES ONLY – not for therapeutic or diagnostic use in humans.


"CryoMite" is a Trademark TM of INDIGO Biosciences, Inc. (State College, PA).

Product prices, availability, specifications and claims are subject to change without prior notice.

Copyright © INDIGO Biosciences, Inc. All Rights Reserved.

APPENDIX 1

Example scheme for the serial dilution of Rifampicin reference agonist, and the setup of a

