Human Retinoic Acid Receptor Beta
(NR1B2, RARB, RARβ)
Reporter Assay System

384-well Format Assays
Product # IB02102

Technical Manual
(version 7.1)

www.indigobiosciences.com
1981 Pine Hall Road, State College, PA, 16801, USA

Customer Service:
814-234-1919; FAX 814-272-0152
customerserv@indigobiosciences.com

Technical Service:
814-234-1919
techserv@indigobiosciences.com
Human RARβ Reporter Assay System
384-well Format Assays

I. Description
• The Assay System ...3
• The Assay Chemistry ...3
• Preparation of Test Compounds ..4
• Considerations for Automated Dispensing4
• Assay Scheme ...4
• Assay Performance ..5

II. Product Components & Storage Conditions7

III. Materials to be Supplied by the User7

IV. Assay Protocol
• A word about Antagonist-mode assay setup8
 • DAY 1 Assay Protocol ...8
 • DAY 2 Assay Protocol ...10

V. Related Products ..11

VI. Limited Use Disclosures ...11

APPENDIX 1: Example Scheme for Serial Dilution12
I. Description

- The Assay System -
This nuclear receptor assay system utilizes proprietary non-human cells engineered to provide constitutive, high-level expression of the Human Retinoic Acid Receptor, Beta (NR1B2), a ligand-dependent transcription factor commonly referred to as RARB or RARβ.

INDIGO's Reporter Cells include the luciferase reporter gene functionally linked to a RARβ-responsive promoter. Thus, quantifying changes in luciferase expression in the treated reporter cells provides a sensitive surrogate measure of the changes in RARβ activity. The principle application of this reporter assay system is in the screening of test samples to quantify any functional activity, either agonist or antagonist, that they may exert against human RARβ.

RARβ Reporter Cells are prepared using INDIGO’s proprietary CryoMite™ process. This cryo-preservation method yields exceptional cell viability post-thaw, and provides the convenience of immediately dispensing healthy, division-competent reporter cells into assay plates. There is no need for cumbersome intermediate treatment steps such as spin-and-rinse of cells, viability determinations, cell titer adjustments, or the pre-incubation of reporter cells prior to assay setup.

INDIGO Bioscience’s Nuclear Receptor Reporter Assays are all-inclusive cell-based assay systems. In addition to RARβ Reporter Cells, this kit provides two optimized media for use during cell culture and in diluting the user's test samples, a reference agonist, Luciferase Detection Reagent, and a cell culture-ready assay plate.

- The Assay Chemistry -
INDIGO’s nuclear receptor reporter assay systems capitalize on the extremely low background, high-sensitivity, and broad linear dynamic range of bio-luminescence reporter gene technology.

Reporter Cells incorporate the cDNA encoding beetle luciferase, a 62 kD protein originating from the North American firefly (Photinus pyralis). Luciferase catalyzes the mono-oxidation of D-luciferin in a Mg²⁺-dependent reaction that consumes O₂ and ATP as co-substrates, and yields as products oxyluciferin, AMP, PPᵢ, CO₂, and photon emission. Luminescence intensity of the reaction is quantified using a luminometer, and is reported in terms of Relative Light Units (RLU’s).

INDIGO’s Nuclear Receptor Assay Systems feature a luciferase detection reagent specially formulated to provide stable light emission between 30 and 100+ minutes after initiating the luciferase reaction. Incorporating a 30 minute reaction-rest period ensures that light emission profiles attain maximal stability, thereby allowing assay plates to be processed in batch. By doing so, the signal output from all sample wells, from one plate to the next, may be directly compared within an experimental set.
Preparation of Test Compounds

Most commonly, test compounds are solvated at high-concentration in DMSO, and these are stored as master stocks. Master stocks are then diluted to appropriate working concentrations immediately prior to setting up the assay. Users are advised to dilute test compounds to 2x-concentration stocks using Compound Screening Medium (CSM), as described in Step 2 of the Assay Protocol. This method avoids the adverse effects of introducing high concentrations of DMSO into the assay. The final concentration of total DMSO carried over into assay reactions should never exceed 0.4%.

NOTE: CSM is formulated to help stabilize hydrophobic test compounds in the aqueous environment of the assay mixture. Nonetheless, high concentrations of extremely hydrophobic test compounds diluted in CSM may lack long-term stability and/or solubility, especially if further stored at low temperatures. Hence, it is recommended that test compound dilutions are prepared in CSM immediately prior to assay setup, and are considered to be 'single-use' reagents.

Considerations for Automated Dispensing

When processing a small number of assay plates, first carefully consider the dead volume requirement of your dispensing instrument before committing assay reagents to its setup. In essence, "dead volume" is the volume of reagent that is dedicated to the instrument; it will not be available for final dispensing into assay wells. The following Table provides information on reagent volume requirements, and available excesses.

<table>
<thead>
<tr>
<th>Stock Reagent & Volume provided</th>
<th>Volume to be Dispensed (384-well plate)</th>
<th>Excess rgt. volume available for instrument dead volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporter Cell Suspension 7.5 ml</td>
<td>15 µl / well 5.8 ml / plate</td>
<td>~ 1.7 ml</td>
</tr>
<tr>
<td>Detection Substrate 7.8 ml</td>
<td>15 µl / well 5.8 ml / plate</td>
<td>~ 2 ml</td>
</tr>
</tbody>
</table>

Assay Scheme

Figure 1. Assay workflow. *In brief,* the prepared suspension of thawed Reporter Cells are dispensed into wells of the assay plate and then immediately dosed with the user’s test compounds. Following 22 -24 hr incubation Detection Substrate is added. Light emission from each assay well is quantified using a plate-reading luminometer.
Assay Performance

Human RARβ Assay
Dose-Response of Reference Agonists

Figure 2a. Agonist dose-response analyses of the RARβ Assay.

Validation of the RARβ Assay was performed using manual dispensing and following the protocol described in this Technical Manual, using the reference agonists all-trans-Retinoic Acid (provided), Adapalene (Tocris), and BMS 453 (Tocris). In addition, to assess the level of background signal contributed by non-specific factor(s) that may cause activation of the luciferase reporter gene, “mock” reporter cells were specially prepared to contain only the luciferase reporter vector (mock reporter cells are not provided with assay kits). RARβ Reporter Cells and Mock reporter cells were identically treated with trans-retinoic acid, as described in Appendix 1. Luminescence was quantified using a GloMax-Multi+ plate-reading luminometer (Promega Corp.). Average relative light units (RLU) and respective standard deviation (SD) and Signal-to-Background (S/B) values were determined for each treatment concentration (n ≥ 6). Z’ values were calculated as described by Zhang, et al. (1999). Non-linear regression analyses were performed and EC50 values determined using GraphPad Prism software. Mock reporter cells treated with trans-retinoic acid demonstrate no significant background luminescence (≤ 0.05% that of the reporter cells at ECMax). Thus, luminescence results strictly through ligand-activation of the human RARβ expressed in these reporter cells. These data confirm the robust performance of this RARβ Reporter Assay System, and demonstrate its suitability for use in HTS applications.1

Z’ = 1-[3*(SDControl + SDBackground) / (RLUControl – RLUBackground)]
Figure 2b. Validation of RARβ antagonist dose-responses performed in combination with INDIGO's Live Cell Multiplex Assay.

RARβ antagonist assays were performed using LE 135 (Tocris), and CD 2665 (Tocris). Assay setup and quantification of RARβ activity were performed following the protocol described in this Technical Manual. To confirm that the observed drop in RLU values resulted from receptor inhibition, as opposed to induced cell death, the relative numbers of live cells in each assay well were determined using INDIGO's Live Cell Multiplex (LCM) Assay (#LCM-01).

Final assay concentrations of the respective antagonists ranged between 6 µM and 5.7 pM, including a ‘no antagonist’ control (n ≥ 6 per treatment; highest [DMSO] ≤ 0.15% f.c.). Each treatment also contained 3 nM (approximating EC₅₀) trans-Retinoic Acid as challenge agonist. Assay plates were incubated for 24 hrs, then processed according to the LCM Assay protocol to quantify relative numbers of live cells per treatment condition. Plates were then further processed to quantify RARβ activity for each treatment condition.

Results: LE 135 and CD 2665 both caused dose-dependent reduction in RLU values. The LCM Assay reveals no significant variance in the numbers of live cells per assay well, up to the maximum treatment concentration of 6 µM. Hence, the observed reduction in RLU values can be attributed to dose-dependent inhibition of RARβ activity, and not to cell death.
II. Product Components & Storage Conditions

This Human RARβ Reporter Assay System contains materials to perform assays in a single 384-well assay plate.

The aliquot of RARβ Reporter Cells is provided as a single-use reagent. Once thawed, reporter cells can NOT be refrozen or maintained in extended culture with any hope of retaining downstream assay performance. Therefore, extra volumes of these reagents should be discarded after assay setup.

Assay kits are shipped on dry ice. Upon receipt, individual kit components may be stored at the temperatures indicated on their respective labels. Alternatively, the entire kit may be further stored at -80°C.

To ensure maximal viability, “Reporter Cells” must be maintained at -80°C until immediately prior to use.

The date of product expiration is printed on the Product Qualification Insert (PQI) enclosed with each kit.

<table>
<thead>
<tr>
<th>Kit Components</th>
<th>Amount</th>
<th>Storage Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RARβ Reporter Cells</td>
<td>1 x 2.0 mL</td>
<td>-80°C</td>
</tr>
<tr>
<td>• Cell Recovery Medium (CRM)</td>
<td>1 x 6 mL</td>
<td>-20°C</td>
</tr>
<tr>
<td>• Compound Screening Medium (CSM)</td>
<td>1 x 35 mL</td>
<td>-20°C</td>
</tr>
<tr>
<td>• trans-Retinoic Acid, 10 mM (in DMSO) (reference agonist for RARβ)</td>
<td>1 x 30 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>• Detection Substrate</td>
<td>1 x 7.8 mL</td>
<td>-80°C</td>
</tr>
<tr>
<td>• 384-well assay plate (white, sterile, cell-culture ready)</td>
<td>1</td>
<td>ambient</td>
</tr>
</tbody>
</table>

III. Materials to be Supplied by the User

The following materials must be provided by the user, and should be made ready prior to initiating the assay procedure:

DAY 1
• cell culture-rated laminar flow hood.
• 37°C, humidified 5% CO₂ incubator for mammalian cell culture.
• 37°C water bath.
• 70% alcohol wipes
• 8- or 12-channel electronic, repeat-dispensing pipettes & sterile tips
• disposable media basins, sterile.
• sterile multi-channel media basins (such as the Heathrow Scientific "Dual-Function Solution Basin"), or deep-well plates, or appropriate similar vessel for generating dilution series of reference compound(s) and test compound(s).
• antagonist reference compound (optional).

DAY 2 plate-reading luminometer.
IV. Assay Protocol

Review the entire Assay Protocol before starting. Completing the assay requires an overnight incubation. *Steps 1-8* are performed on **Day 1**, requiring less than 2 hours to complete. *Steps 9-15* are performed on **Day 2**, and require less than 1 hour to complete.

- **A word about Antagonist-mode assay setup**

Receptor inhibition assays expose the Reporter Cells to a constant, sub-maximal concentration (typically between EC$_{50}$ – EC$_{85}$) of a known agonist AND the test compound(s) to be evaluated for antagonist activity. This RARβ Reporter Assay System kit includes a 10 mM stock solution of *trans*-Retinoic Acid, an agonist of RARβ that may be used to setup antagonist-mode assays. 3 nM *trans*-Retinoic Acid typically approximates EC$_{75}$ in this reporter assay. Hence, it presents a reasonable assay concentration of agonist to be used when screening test compounds for inhibitory activity.

We find that adding the reference agonist to the bulk suspension of Reporter Cells (*i.e.*, prior to dispensing into assay wells) is the most efficient and precise method of setting up antagonist assays, and it is the method presented in *Step 5b* of the following protocol. Note that, in *Step 6*, 15 µl of treatment media is combined with 15 µl of pre-dispensed [Reporter Cells + agonist]. Consequently, one must prepare the bulk suspension of Reporter Cells to contain a 2x-concentration of the reference agonist. **APPENDIX 1** provides a dilution scheme that may be used as a guide when preparing cell suspension supplemented with a desired 2x-concentration of agonist.

DAY 1 Assay Protocol:

All steps must be performed using proper aseptic technique.

1.) **Remove** Cell Recovery Medium (CRM) and Compound Screening Medium (CSM) from freezer storage and thaw in a 37°C water bath.

2.) **Prepare dilutions of treatment compounds:** Prepare Test Compound treatment media for Agonist- or Antagonist-mode screens.

The final concentration of total DMSO carried over into assay reactions should never exceed 0.4%.

Note that, in *Step 6*, 15 µl of the prepared treatment media is added into assay wells that have been pre-dispensed with 15 µl of Reporter Cells. Hence, to achieve the desired *final* assay concentrations one must prepare treatment media with a 2x-concentration of the test and reference material(s). Use CSM to prepare the appropriate dilution series. Plan dilution volumes carefully. This assay kit provides 35 ml of CSM.

Preparing the positive control: This RARβ Reporter Assay System kit includes a 10 mM stock solution of *trans*-Retinoic Acid, a reference agonist of RARβ. The following 7-point treatment series, with concentrations presented in 5-fold decrements, provides a suitable dose-response: 200, 40.0, 8.00, 1.60, 0.320, 0.0640 , 0.0128 nM, and including a 'no treatment' control. **APPENDIX 1** provides an example for generating such a dilution series.

3.) **Rapid Thaw of the Reporter Cells:** *First*, retrieve the tube of CRM from the 37°C water bath and sanitize the outside surface with a 70% ethanol swab.

Second, retrieve Reporter Cells from -80°C storage and, *without delay*, perform a rapid thaw of the frozen cells by transferring a 5.5 ml volume of the pre-warmed CRM into the tube of frozen cells. Recap the tube of Reporter Cells and immediately place it in a 37°C water bath for 5 - 10 minutes. The resulting volume of cell suspension will be 7.5 ml.
4.) Retrieve the tube of Reporter Cell Suspension from the water bath. Sanitize the outside surface of the tube with a 70% alcohol swab, then transfer it into the cell culture hood.

5.) **a. Agonist-mode assays.** Gently invert the tube of Reporter Cells several times to disperse cell aggregates and gain an homogenous cell suspension. Without delay, dispense 15 µl of cell suspension into each well of the Assay Plate.

 ~ or ~

5.) **b. Antagonist-mode assays.** Gently invert the tube of Reporter Cells several times to disperse any cell aggregates, and to gain an homogenous cell suspension. Supplement the bulk suspension of Reporter Cells with the desired 2x-concentration of reference agonist (refer to "A word about antagonist-mode assay setup", pg. 8). Dispense 15 µl of cell suspension into each well of the Assay Plate.

NOTE 5.1: Take special care to prevent cells from settling during the dispensing period. Allowing cells to settle during the transfer process, and/or lack of precision in dispensing uniform volumes across the assay plate will cause well-to-well variation (= increased Standard Deviation) in the assay.

NOTE 5.2: Users sometimes prefer to examine the reporter cells using a microscope. If so, the extra volume of cell suspension provided with each kit may be dispensed into a clear assay plate, treated +/- test compounds as desired, and incubated overnight in identical manner to those reporter cells contained in the white assay plate.

6.) Dispense 15 µl of 2x-concentration treatment media into appropriate assay wells.

7.) Transfer the assay plate into a 37°C, humidified 5% CO₂ incubator for 22 - 24 hours.

NOTE: Ensure a high-humidity (≥ 90%) environment within the cell culture incubator. This is critical to prevent the onset of deleterious “edge-effects” in the assay plate.

8.) For greater convenience on Day 2, retrieve **Detection Substrate** from freezer storage and place in a dark refrigerator (4°C) to thaw overnight.
9.) 30 minutes before intending to quantify RARβ activity, remove Detection Substrate from the refrigerator and place them in a low-light area so that it may equilibrate to room temperature. Gently invert the tube several times to ensure a homogenous solution.

NOTE: Do NOT actively warm Detection Substrate above room temperature. If these solutions were not allowed to thaw overnight at 4°C, a room temperature water bath may be used to expedite thawing.

10.) Set the plate-reader to "luminescence" mode. Set the instrument to perform a single 5 second “plate shake” prior to reading the first assay well. Read time may be set to 0.5 second (500 mSec) per well, or less.

11.) Following 22 - 24 hours of incubation add 15 µl of Detection Substrate to each well of the assay plate.

NOTE: Perform manual reagent transfers carefully to avoid bubble formation! Scattered micro-bubbles will not pose a problem. However, bubbles covering the surface of the reaction mix, or large bubbles clinging to the side walls of the well, will cause lens-effects that may significantly degrade the accuracy and precision of the assay data. In the event of excessive bubble formation during manual processing, spin the assay plate (with lid) at low speed for 1-2 minutes using a room temperature centrifuge fitted with counter-balanced plate carriers.

12.) Allow the plate(s) to rest at room temperature for 30 minutes. Do not shake the assay plate(s) during this period.

NOTE: the luminescent signal is unstable during the first 30 minutes of the luciferase reaction, however, after the initial 30 minute reaction period the luminescence signal achieves a stable emission output.

13.) Quantify luminescence.

DAY 2 Assay Protocol:
Subsequent manipulations do not require special regard for aseptic technique, and may be performed on a bench top.
V. Related Products

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Product Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCM-01</td>
<td>Reagent volumes sufficient to perform 96 Live Cell Assays in 1x96-well, or 2x48-well, or 3x32-well assay plate formats</td>
</tr>
<tr>
<td>LCM-05</td>
<td>Reagent in 5x-bulk volume to perform 480 Live Cell Assays in any combination of 1x96-, 2x48-, or 3x32-well assay plate formats</td>
</tr>
<tr>
<td>LCM-10</td>
<td>Reagent in 10x-bulk volume to perform 960 Live Cell Assays in any combination of 1x96-, 2x48-, or 3x32-well assay plate formats</td>
</tr>
</tbody>
</table>

Please refer to INDIGO Biosciences website for updated product offerings.

www.indigobiosciences.com

VI. Limited Use Disclosures

Products commercialized by INDIGO Biosciences, Inc. are for RESEARCH PURPOSES ONLY – not for therapeutic or diagnostic use in humans. Other applications of this product may require licenses from others, including one or more of the institutions listed below.

“CryoMite” is a Trademark ™ of INDIGO Biosciences, Inc.

Product prices, availability, specifications and claims are subject to change without prior notice.

Copyright INDIGO Biosciences, Inc. All Rights Reserved.
APPENDIX 1

Example scheme for the serial dilution of *trans*-Retinoic Acid reference agonist, and the setup of an RARβ dose-response assay.