Human Thyroid Hormone Receptor Beta
(NR1A2, TRβ)
Reporter Assay System

96-well Format Assays
Product # IB01101

Technical Manual
(version 7.2b)

www.indigobiosciences.com
1981 Pine Hall Road, State College, PA, 16801, USA

Customer Service:
814-234-1919; FAX 814-272-0152
customerserv@indigobiosciences.com

Technical Service:
814-234-1919
techserv@indigobiosciences.com
Human TRβ Reporter Assay System
96-well Format Assays

I. Description
• The Assay System………………………………………………………3
• The Assay Chemistry……………………………………………………3
• Preparation of Test Compounds………………………………………4
• Considerations for Automated Dispensing…………………………4
• Assay Scheme……………………………………………………………4
• Assay Performance………………………………………………………5

II. Product Components & Storage Conditions ……………………6

III. Materials to be Supplied by the User……………………………..6

IV. Assay Protocol
• A word about Antagonist-mode assay setup………………………7
 • DAY 1 Assay Protocol…………………………………………………7
 • DAY 2 Assay Protocol…………………………………………………9

V. Related Products………………………………………………………10

VI. Limited Use Disclosures………………………………………………10

APPENDIX 1: Example Scheme for Serial Dilutions…………………11
I. Description

▪ The Assay System ▪

This nuclear receptor assay system utilizes proprietary human cells engineered to provide constitutive, high-level expression of the Human Thyroid Hormone Receptor beta (NR1A2), a ligand-dependent transcription factor commonly referred to as TRβ.

INDIGO's Reporter Cells include the luciferase reporter gene functionally linked to a TRβ-responsive promoter. Thus, quantifying changes in luciferase expression in the treated reporter cells provides a sensitive surrogate measure of the changes in TRβ activity. The principle application of this assay is in the screening of test samples to quantify any functional activity, either agonist or antagonist, that they may exert against human TRβ.

Reporter Cells are prepared using INDIGO’s proprietary CryoMite™ process. This cryopreservation method yields exceptional cell viability post-thaw, and provides the convenience of immediately dispensing healthy, division-competent reporter cells into assay plates. There is no need for cumbersome intermediate treatment steps such as spin-and-rinse of cells, viability determinations, cell titer adjustments, or the pre-incubation of reporter cells prior to assay setup.

INDIGO's Nuclear Receptor Assays are all-inclusive cell-based assay systems. In addition to TRβ Reporter Cells, this kit provides two optimized media for use during cell culture and in diluting the user’s test samples, a reference agonist, Luciferase Detection Reagent, and a cell culture-ready assay plate.

▪ The Assay Chemistry ▪

INDIGO’s nuclear receptor assay kits capitalize on the extremely low background, high-sensitivity, and broad linear dynamic range of bio-luminescence reporter gene technology.

Reporter Cells incorporate the cDNA encoding beetle luciferase, a 62 kD protein originating from the North American firefly (Photinus pyralis). Luciferase catalyzes the monooxidation of D-luciferin in a Mg²⁺-dependent reaction that consumes O₂ and ATP as co-substrates, and yields as products oxyluciferin, AMP, PPi, CO₂, and photon emission. Luminescence intensity of the reaction is quantified using a luminometer and is reported in terms of Relative Light Units (RLU’s).

Assay kits feature a luciferase detection reagent specially formulated to provide stable light emission between 5 and 90+ minutes after initiating the luciferase reaction. Incorporating a 5 minute reaction-rest period ensures that light emission profiles attain maximal stability, thereby allowing assay plates to be processed in batch. By doing so, the signal output from all sample wells, from one plate to the next, may be directly compared within an experimental set.
• Preparation of Test Compounds •

Test compounds are typically solvated at high-concentration in DMSO and stored frozen as master stocks. Immediately prior to setting up an assay, the master stocks are serially diluted using Compound Screening Medium (CSM; as described in Step 7) to achieve the desired assay concentrations. Do not use DMSO to further dilute test compound solutions. This method of dilution avoids the significant adverse effects of introducing high concentrations of DMSO into the assay. The final concentration of total DMSO carried over into assay reactions should never exceed 0.4%.

NOTE: CSM is formulated to help stabilize hydrophobic test compounds in the aqueous environment of the assay mixture. Nonetheless, high concentrations of extremely hydrophobic test compounds diluted in CSM may lack long-term stability and/or solubility, especially if further stored at low temperatures. Hence, it is recommended that test compound dilutions are prepared in CSM immediately prior to assay setup, and are considered to be ‘single-use’ reagents.

• Considerations for Automated Dispensing •

When processing a small number of assay plates, first carefully consider the dead volume requirement of your dispensing instrument before committing assay reagents to its setup. In essence, “dead volume” is the volume of reagent that is dedicated to the instrument; it will not be available for final dispensing into assay wells. The following Table provides information on reagent volume requirements, and available excesses.

<table>
<thead>
<tr>
<th>Stock Reagent & Volume provided</th>
<th>Volume to be Dispensed (96-well plate)</th>
<th>Excess rgt. volume available for instrument dead volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporter Cell Suspension 21 ml (prepared from kit components)</td>
<td>200 µl / well 19.2 ml / plate</td>
<td>~ 1.8 ml</td>
</tr>
<tr>
<td>LDR 12 ml (prepared from kit components)</td>
<td>100 µl / well 9.6 ml / plate</td>
<td>~ 2.4 ml</td>
</tr>
</tbody>
</table>

• Assay Scheme •

Figure 1. Assay workflow.

NOTE: This TRβ assay protocol includes Day 1 steps and dispensed volumes that differ from the historical protocol that some users may be accustomed to; please review the assay workflow, below.

In brief, 200 µl of Reporter Cells is dispensed into wells of the assay plate and pre-incubated for 4-6 hours. Following the pre-incubation period, culture media are discarded and 200 µl/well of the prepared 1x-concentration treatment media are added. Following 22-24 hr incubation, treatment media are discarded and Luciferase Detection Reagent is added. The intensity of light emission (in units of ‘Relative Light Units’; RLU) from each assay well is quantified using a plate-reading luminometer.
Assay Performance

Human TRβ (NR1A2) Agonist Assay

![Graph showing agonist dose-response of TRβ using the reference agonist L-Triiodothyronine.](image)

Figure 2. Agonist dose-response of TRβ using the reference agonist L-Triiodothyronine.

Dose-response analyses of TRβ Reporter Cells were performed according to the protocol provided in this Technical Manual. TRβ Reporter Cells were treated with L-triiodothyronine using an 8-point assay concentration range generated in 3-fold decrements: 150, 50.0, 16.7, 5.56, 1.85, 0.617, 0.206 and 0.0686 nM, and including ‘untreated’ control wells (as described in Appendix 1). Luminescence/well was quantified and the average relative light units (RLU) and corresponding standard deviation (SD) values were determined for each treatment concentration (n ≥ 4). Signal-to-background (S/B) and Z' values were calculated as described by Zhang, et al. (1999). Non-linear regression analyses and EC_{50} calculations were performed using GraphPad Prism software. These data confirm the robust performance of this TRβ Assay and demonstrate its suitability for use in HTS applications.

\[
Z' = 1 - \left[3 \ast (SD_{\text{Control}} + SD_{\text{Background}}) / (RLU_{\text{Control}} - RLU_{\text{Background}})\right]
\]
II. Product Components & Storage Conditions

This Human TRβ Assay kit contains materials to perform assays in a single collagen-coated 96-well assay plate.

The aliquot of Reporter Cells is provided as a single-use reagent. Once thawed, reporter cells can NOT be refrozen or maintained in extended culture with any hope of retaining downstream assay performance. Therefore, extra volumes of these reagents should be discarded after assay setup.

Assay kits are shipped on dry ice. Upon receipt, individual kit components may be stored at the temperatures indicated on their respective labels. Alternatively, the entire kit may be further stored at -80°C.

To ensure maximal viability, “Reporter Cells” must be maintained at -80°C until immediately prior to use.

The date of product expiration is printed on the Product Qualification Insert (PQI) enclosed with each kit.

<table>
<thead>
<tr>
<th>Kit Components</th>
<th>Amount</th>
<th>Storage Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TRβ Reporter Cells</td>
<td>1 x 2.0 mL</td>
<td>-80°C</td>
</tr>
<tr>
<td>• Cell Recovery Medium (CRM)</td>
<td>2 x 10.5 mL</td>
<td>-20°C</td>
</tr>
<tr>
<td>• Compound Screening Medium (CSM)</td>
<td>1 x 45 mL</td>
<td>-20°C</td>
</tr>
<tr>
<td>• L-Triiodothyronine, 150 µM (in DMSO)</td>
<td>1 x 30 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>(reference agonist for TR’s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Detection Substrate</td>
<td>1 x 6.0 mL</td>
<td>-80°C</td>
</tr>
<tr>
<td>• Detection Buffer</td>
<td>1 x 6.0 mL</td>
<td>-20°C</td>
</tr>
<tr>
<td>• 96-well, collagen-coated assay plate</td>
<td>1</td>
<td>-20°C</td>
</tr>
<tr>
<td>(white, sterile, cell-culture ready)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: This Assay kit contains one 96-well assay plate in which the assay wells have been collagen-coated and dried; the assay plate should be stored frozen (-20°C or colder) until use.

III. Materials to be Supplied by the User

The following materials must be provided by the user, and should be made ready prior to initiating the assay procedure:

DAY 1

- cell culture-rated laminar flow hood.
- 37°C, humidified 5% CO₂ incubator for mammalian cell culture.
- 37°C water bath.
- 70% alcohol wipes
- 8-channel electronic, repeat-dispensing pipettes & sterile tips
- disposable media basins, sterile.
- sterile multi-channel media basins (such as the Heathrow Scientific "Dual-Function Solution Basin"), or deep-well plates, or appropriate similar vessel for generating dilution series of reference compound(s) and test compound(s).
- Optional: clear 96-well assay plate, cell culture treated, for viewing cells on Day 2.

DAY 2 plate-reading luminometer.
IV. Assay Protocol

Review the entire Assay Protocol before starting. Completing the assay requires an overnight incubation. **Steps 1-11** are performed on **Day 1**, requiring less than 2 hours of bench work and a 4 hr incubation step to complete. **Steps 12-17** are performed on **Day 2** and require less than 1 hour to complete.

• A word about Antagonist-mode assay setup •

Receptor inhibition assays expose the Reporter Cells to a fixed, sub-maximal concentration (typically between EC\textsubscript{50} – EC\textsubscript{85}) of a known agonist AND varying concentrations of the test compound(s) to be evaluated for antagonist activity. This TR\textsubscript{β} Assay kit includes a 150 \(\mu \text{M} \) stock solution of L-Triglyothryonine, a potent physiological agonist of TR\textsubscript{β} that may be used to setup antagonist-mode assays. 30 nM L-Triglyothryonine typically approximates EC\textsubscript{80} in this assay. Hence, it presents a reasonable assay concentration of agonist to be used when screening test compounds for inhibitory activity.

Add the challenge agonist to a bulk volume of CSM at an EC\textsubscript{50} – EC\textsubscript{85} concentration. This medium is then used to prepare serial dilutions of test compounds to achieve the desired respective final assay concentrations. This is an efficient and precise method of setting up TR\textsubscript{β} antagonist assays, and it is the method presented in Step 7b of this protocol.

DAY 1 Assay Protocol: All steps must be performed using aseptic technique.

1.) Remove the **2 tubes** of **Cell Recovery Medium** (CRM) from freezer storage, thaw and equilibrate to 37°C using a water bath.

2.) **Rapid Thaw of the Reporter Cells:** **First**, retrieve the two tubes of CRM from the 37°C water bath and sanitize their outside surfaces with a 70% ethanol swab. **Second**, retrieve the tube of **Reporter Cells** from -80°C storage and, **without delay**, perform a rapid thaw of the frozen cells by transferring 9.5 ml from **each of the 2 tubes** of 37°C CRM into the tube of frozen cells. Place the tube of Reporter Cells in a 37°C water bath for 5 - 10 minutes. The resulting volume of cell suspension will be **21 ml**.

3.) Retrieve the tube of **Reporter Cell Suspension** from the water bath and sanitize the outside surface with a 70% alcohol swab.

4.) Gently invert the tube of Reporter Cells several times to disperse cell aggregates and gain a homogenous cell suspension. Transfer the cell suspension into a reservoir. Using an 8-chanel pipette, dispense **200 µl / well** of cell suspension into the assay plate.

 NOTE 4.1: Increased well-to-well variation (= increased standard deviation!) will occur if care is not taken to prevent cells from settling during the dispensing period. Likewise, take care to dispense uniform volumes across the assay plate.

 NOTE 4.2: Users sometimes wish to examine the reporter cells using a microscope. If so, the extra volume of cell suspension provided with each kit may be dispensed into a clear 96-well cell culture treated assay plate. Continue to process the assay plate in identical manner to the white assay plate.

5.) **Pre-incubate reporter cells:** Place the assay plate into a 37°C, ≥ 85% humidity, 5% CO\textsubscript{2} incubator for 4 - 6 hours.
6.) Near the end of the 4-6 hour pre-incubation period: Remove Compound Screening Medium (CSM) from freezer storage and thaw in a 37°C water bath.

7.) Prepare the Test Compound and Reference Compound treatment media at the desired final assay concentrations: Use CSM to prepare an appropriate dilution series of the reference and test compound stocks. Prepare all treatment media at the desired final assay concentrations. In Step 9, the prepared treatment media will be dispensed at 200 µl / well into the assay plate. Manage dilution volumes carefully; this assay kit provides 45 ml of CSM.

 NOTE: Total DMSO carried over into assay reactions should never exceed 0.4%.

 a. Agonist-mode assays. This TRβ Assay kit includes a 150 µM stock solution of L-Triiodothyronine, the most commonly cited reference agonist of TRβ. The following 8-point treatment series, with concentrations prepared in 3-fold decrements, provides a suitable dose-response: 150, 50, 16.7, 5.56, 1.85, 0.617, 0.206 and 0.0686 nM, and including ‘untreated’ control wells. APPENDIX 1 provides guidance for generating such a dilution series.

 ~ or ~

 b. Antagonist-mode assays. When setting up antagonist assays, first supplement a bulk volume of CSM with the challenge agonist L-Triiodothyronine to achieve the desired final assay-concentration (refer to "A word about antagonist-mode assay setup", pg. 7). The agonist-supplemented CSM is then used to generate dilutions of test compound stocks to achieve their final assay concentrations.

8.) At the end of the cell pre-incubation period, discard the culture media by ejecting it into an appropriate waste container. Gently tap the inverted plate onto a clean absorbent paper towel to remove residual droplets. Cells will remain tightly adhered to well bottoms.

9.) Dispense 200 µl of each treatment media into appropriate wells of the assay plate.

10.) Transfer the assay plate into a 37°C, humidified 5% CO₂ incubator for 22 - 24 hours.

 NOTE: Ensure a high-humidity (≥ 85%) environment within the cell culture incubator. This is critical to prevent the onset of deleterious "edge-effects" in the assay plate.

11.) For greater convenience on Day 2, retrieve Detection Substrate and Detection Buffer from freezer storage and place them in a dark refrigerator (4°C) to thaw overnight.
12.) 30 minutes before intending to quantify receptor activity: remove Detection Substrate and Detection Buffer from the refrigerator and place them in a low-light area so that they may equilibrate to room temperature. Once at room temperature, gently invert each tube several times to ensure homogenous solutions.

 NOTE: Do NOT actively warm Detection Substrate above room temperature. If these solutions were not allowed to thaw overnight at 4°C, a room temperature water bath may be used to expedite thawing.

13.) Set the plate-reader to "luminescence" mode. Set the instrument to perform a single 5 second "plate shake" prior to reading the first assay well. Read time may be set to 0.5 second (500 mSec) per well, or less.

14.) Immediately before proceeding to Step 15, transfer the entire volume of Detection Buffer into the vial of Detection Substrate, thereby generating a 12 ml volume of Luciferase Detection Reagent (LDR). Mix gently to avoid foaming.

15.) Following 22 - 24 hours incubation in treatment media, discard the media contents by ejecting it into an appropriate waste container. Gently tap the inverted plate onto a clean absorbent paper towel to remove residual droplets. Cells will remain tightly adhered to well bottoms.

16.) Add 100 µl of LDR to each well of the assay plate. Allow the assay plate to rest at room temperature for at least 5 minutes following the addition of LDR. Do not shake the assay plate during this period.

17.) Quantify luminescence.
V. Related Products

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Product Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB01101-32</td>
<td>Human TRβ Reporter Assay System 3x 32 assays in 96-well format</td>
</tr>
<tr>
<td>IB01101</td>
<td>Human TRβ Reporter Assay System 1x 96-well format assay</td>
</tr>
<tr>
<td>IB01102</td>
<td>Human TRβ Reporter Assay System 1x 384-well format assays</td>
</tr>
</tbody>
</table>

Bulk volumes of Assay Reagents may be custom manufactured to accommodate any scale of HTS. Please Inquire.

Panel of Human TR Assays

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB01201-48P</td>
<td>Human TRα and TRβ Reporter Assay PANEL 48 assays each, 1x 96-well assay plate</td>
</tr>
</tbody>
</table>

LIVE Cell Multiplex (LCM) Assay

<table>
<thead>
<tr>
<th>Product No.</th>
<th>Product Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCM-01</td>
<td>Reagent volumes sufficient to perform 96 Live Cell Assays in 1x96-well, or 2x48-well, or 3x32-well assay plate formats</td>
</tr>
<tr>
<td>LCM-05</td>
<td>Reagent in 5x-bulk volume to perform 480 Live Cell Assays in any combination of 1x96-, 2x48-, or 3x32-well assay plate formats</td>
</tr>
<tr>
<td>LCM-10</td>
<td>Reagent in 10x-bulk volume to perform 960 Live Cell Assays in any combination of 1x96-, 2x48-, or 3x32-well assay plate formats</td>
</tr>
</tbody>
</table>

Please refer to INDIGO Biosciences website for updated product offerings.

www.indigobiosciences.com

VI. Limited Use Disclosures

Products commercialized by INDIGO Biosciences, Inc. are for RESEARCH PURPOSES ONLY – not for therapeutic or diagnostic use in humans.

“CryoMite” is a Trademark ™ of INDIGO Biosciences, Inc. (State College, PA, USA).

Product prices, availability, specifications, claims and technical protocols are subject to change without prior notice. The printed Technical Manual provided in the kit box will always be the most currently updated version.

Copyright © INDIGO Biosciences, Inc. (State College, PA, USA). All rights reserved.
APPENDIX 1
Example scheme for the serial dilution of L-Triiodothyronine reference agonist, and the setup of a TRβ dose-response assay.