

Human Nuclear Factor (erythroid-derived2)-like 2 (Nrf2; NFE2L2) Reporter Assay System

96-well Format Assays Product # IB10001

Technical Manual

(version 7.2e)

www.indigobiosciences.com

3006 Research Drive, Suite A1, State College, PA 16801, USA

Customer Service: 814-234-1919; FAX 814-272-0152 customerserv@indigobiosciences.com

Technical Service: 814-234-1919 techserv@indigobiosciences.com

Human Nrf2 Reporter Assay System 96-well Format Assays

I.	Description	
• Bac	ckground	3
• The	e Assay System	3
• The	e Assay Chemistry	4
• Pre	eparation of Test Compounds	4
• Cor	nsiderations for Automated Dispensing	5
• Ass	say Scheme	5
• Ass	say Performance	6
II. P	Product Components & Storage Conditions	7
III. N	Materials to be Supplied by the User	7
IV.	Assay Protocol	
• A w	word about Antagonist-mode assay setup	8
	■ DAY 1 Assay Protocol	8
	■ DAY 2 Assay Protocol	10
V. R	elated Products	11
VI. I	Limited Use Disclosures	11
APP	PENDIX 1: Example Scheme for Serial Dilutions	12

I. Description

Background

Nuclear Factor (**erythroid-derived 2**)-**like 2** (**Nrf2**) is a ubiquitously expressed, basic leucine zipper transcription factor. It regulates the expression of a variety of genes encoding proteins that play critical roles in cyto-protection, as well as the detoxification and clearance of harmful endogenous and xenobiotic substances. In particular, Nrf2 regulates the expression of antioxidant proteins that confer cyto-protection against oxidative damage.

Under normal conditions Nrf2 resides in the cytoplasm in association with Keap1 and Cullin 3. Within the confines of this protein cluster Nrf2 is the target of ubiquitination and rapid turn-over *via* proteasomal degradation. However, under conditions of cellular oxidative stress the tight association of Nrf2 with Keap1 and Cullin 3 is broken, effectively disrupting the otherwise efficient process of Nrf2 degradation. Once non-ubiquitinated Nrf2 accumulates in the cytoplasm it translocates into the nucleus, whereupon it forms hetero-dimers with Maf. In this configuration Nrf2 binds to antioxidant response element (ARE) sequences resident in the promoter regions of some genes, initiating transcription complex formation, and culminating in the expression of antioxidant proteins.

■ The Assay System ■

INDIGO's Human Nrf2 Reporter Cells include the luciferase reporter gene functionally linked to a promoter containing tandem antioxidant response elements (AREs). Thus, quantifying changes in luciferase expression in the treated reporter cells provides a sensitive surrogate measure of the changes in Nrf2 activity. The principal application of this assay is in the screening of test samples to quantify any functional activity, either agonist or antagonist, that they may exert against human Nrf2.

Nrf2 Reporter Cells are prepared using INDIGO's proprietary **CryoMiteTM** process. This cryo-preservation method yields exceptional cell viability post-thaw, and provides the convenience of immediately dispensing healthy, division-competent reporter cells into assay plates. There is no need for cumbersome intermediate treatment steps such as spin-and-rinse of cells, viability determinations, or cell titer adjustments prior to assay setup.

INDIGO's Human Nrf2 assay kit is an all-inclusive system. In addition to Nrf2 Reporter Cells, this kit provides two optimized media for use during cell culture and in diluting the user's test samples, a reference activator of Nrf2, Luciferase Detection Reagent, and a cell culture-ready assay plate.

The Assay Chemistry

INDIGO's cell-based assay format capitalizes on the extremely low background, highsensitivity, and broad linear dynamic range of bio-luminescence reporter gene technology.

Reporter Cells incorporate the cDNA encoding beetle luciferase, a 62 kD protein originating from the North American firefly (*Photinus pyralis*). Luciferase catalyzes the mono-oxidation of D-luciferin in a Mg⁺²-dependent reaction that consumes O₂ and ATP as co-substrates, and yields as products oxyluciferin, AMP, PP_i, CO₂, and photon emission. Luminescence intensity of the reaction is quantified using a luminometer and is reported in terms of Relative Light Units (RLU's).

INDIGO's assay kits feature a luciferase detection reagent specially formulated to provide stable light emission between 5 and 90+ minutes after initiating the luciferase reaction. Incorporating a 5-minute reaction-rest period ensures that light emission profiles attain maximal stability, thereby allowing assay plates to be processed in batch. By doing so, the signal output from all sample wells, from one plate to the next, may be directly compared within an experimental set.

Preparation of Test Compounds

Small molecule test compounds are typically solvated in DMSO at high concentrations; ideally 1,000x-concentrated stocks relative to the highest desired treatment concentration in the assay. Using high-concentration stocks minimizes DMSO carry-over into the assay plates. Immediately prior to setting up an assay, the master stocks are serially diluted using one of two alternative strategies:

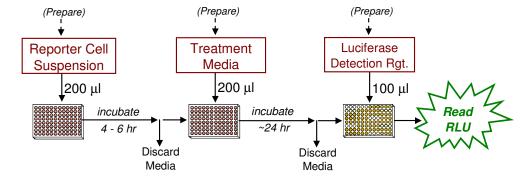
1.) As described in Step 7 and depicted in Appendix 1 for the reference agonist CDDO-Im, **Compound Screening Medium (CSM)** may be used as the diluent to make serial dilutions of test compounds to achieve the desired final assay concentration series.

Alternatively, if test compound solubility is expected to be problematic,

2.) DMSO may be used to make serial dilutions, thereby generating 1,000x-concentrated stocks for each independent test concentration. Treatment media are then prepared using CSM to make final 1,000-fold dilutions of the prepared DMSO dilution series.

Regardless of the dilution method used, the final concentration of total DMSO carried over into assay wells should *never* exceed 0.4%. Significant DMSO-induced cytotoxicity can be expected above 0.4%.

NOTE: CSM is formulated to help stabilize hydrophobic test compounds in the aqueous environment of the assay mixture. Nonetheless, high concentrations of extremely hydrophobic test compounds diluted in CSM may lack long-term stability and/or solubility, especially if further stored at low temperatures. Hence, it is recommended that test compound dilutions are prepared in CSM immediately prior to assay setup, and that they are considered to be 'single-use' reagents.


Considerations for Automated Dispensing

When processing a small number of assay plates, first carefully consider the dead volume requirement of your dispensing instrument before committing assay reagents to its setup. In essence, "dead volume" is the volume of reagent that is dedicated to the instrument; it will *not* be available for final dispensing into assay wells. The following Table provides information on reagent volume requirements, and available excesses.

Stock Reagent & Volume provided	Volume to be Dispensed (96-well plate)	Excess rgt. volume available for instrument dead volume
Reporter Cell Suspension 21 ml (prepared from kit components)	200 μl / well 19.2 ml / plate	~ 1.8 ml
LDR 12 ml (prepared from kit components)	100 μl / well 9.6 ml / plate	~ 2.4 ml

■ Assay Scheme ■

Figure 1. Assay workflow. *In brief*, Reporter Cells is dispensed into wells of the assay plate and <u>pre-incubated for 4-6 hours.</u> Following the pre-incubation period, culture media are discarded, and the prepared treatment media are added. Following 22-24 hr incubation, treatment media are discarded, and Luciferase Detection Reagent is added. The intensity of light emission (in units of 'Relative Light Units'; RLU) from each assay well is quantified using a plate-reading luminometer. *Note:* If INDIGO's Live Cell Multiplex (LCM) Assay is to be incorporated, refer to the assay workflow schematic provided in the LCM Assay Technical manual.

Assay Performance

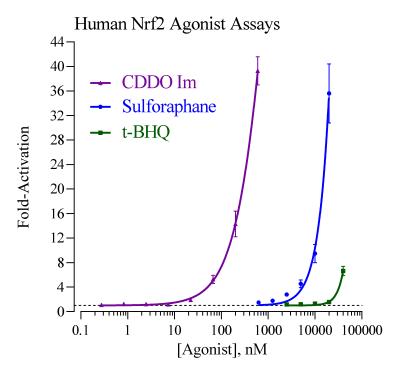


Figure 2. Agonist dose-response analyses of Human Nrf2.

Agonist analyses of Human Nrf2 Reporter Cells were performed according to the protocol described in this Technical manual, using the reference agonists CDDO Im (provided), L-Sulforaphane (Tocris), and t-BHQ (t-butyl hydroquinone; Enzo). Average values of foldactivation of Nrf2 and Z' were calculated as described by Zhang, *et al.* (1999)¹. Non-linear regression and EC₅₀ analyses were performed using GraphPad Prism software.

The reference agonist t-BHQ yielded a Z' value of 0.79, confirming the robust performance of this assay and its suitability for HTS¹.

$$Z' = 1 - [3*(SD^{Control} + SD^{Background}) / (RLU^{Control} - RLU^{Background})]$$

¹ Zhang JH, Chung TD, Oldenburg KR. (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen.:**4**(2), 67-73.

II. Product Components & Storage Conditions

This Human Nrf2 Assay kit contains materials to perform assays in a single 96-well assay plate.

Reporter cells are temperature sensitive! To ensure maximal viability the tube of cells must be maintained at -80° C until immediately prior to the rapid-thaw procedure described in *Step 2* of this protocol.

Assay kits are shipped on dry ice. Upon receipt of the kit transfer it to -80°C storage. If you wish to first inspect and inventory the individual kit components be sure to first transfer and submerge the tube of reporter cells in dry ice.

The aliquot of Reporter Cells is provided as a single-use reagent. Once thawed, reporter cells can NOT be refrozen, nor can they be maintained in extended culture with any hope of retaining downstream assay performance. Therefore, extra volumes of these reagents should be discarded after assay setup.

The date of product expiration is printed on the Product Qualification Insert (PQI) enclosed with each kit.

Kit Components	Amount	Storage Temp.
• Nrf2 Reporter Cells	1 x 2.0 mL	-80°C
• Cell Recovery Medium (CRM)	2 x 10.5 mL	-20°C
• Compound Screening Medium (CSM)	1 x 45 mL	-20°C
• CDDO Im, 300 μM (in DMSO) (positive control for Nrf2 activation)	1 x 30 μL	-20°C
 Detection Substrate 	1 x 6.0 mL	-80°C
• Detection Buffer	1 x 6.0 mL	-20°C
 96-well assay plate (white, sterile, collagen-coated) 	1	-20°C

NOTE: This assay kit contains one 96-well assay plate in which the assay wells have been collagen-coated and dried; the assay plate should be <u>stored frozen</u> (-20°C or colder) until use.

III. Materials to be Supplied by the User

The following materials must be provided by the user, and should be made ready prior to initiating the assay procedure:

DAY 1

- dry ice bucket (Step 2)
- cell culture-rated laminar flow hood.
- 37°C, humidified 5% CO₂ incubator for mammalian cell culture.
- 37°C water bath.
- 70% alcohol wipes
- 8-channel electronic, repeat-dispensing pipettes & sterile tips
- disposable media basins, sterile.
- sterile multi-channel media basins (such as the Heathrow Scientific "Dual-Function Solution Basin"), *or* sterilized 96 deep-well blocks (*e.g.*, Axygen Scientific, #P-2ML-SQ-C-S), *or* appropriate similar vessel for generating dilution series of reference and test compound(s).
- Optional: clear 96-well assay plate, sterile, collagen-coated, for viewing cells on Day 2.

DAY 2 plate-reading luminometer.

IV. Assay Protocol

Review the entire Assay Protocol before starting. Completing the assay requires an overnight incubation. *Steps 1-11* are performed on *Day 1*, requiring less than 2 hours of actual bench work plus a 4 hr pre-incubation step. *Steps 12-17* are performed on *Day 2* and require less than 1 hour to complete.

A word about Antagonist-mode assay setup

Receptor inhibition assays expose the Reporter Cells to a constant, sub-maximal concentration (typically between $EC_{50} - EC_{85}$) of a known agonist AND the test compound(s) to be evaluated for antagonist activity. This Nrf2 Assay kit includes a 300 μ M stock solution of **CDDO Im**, an activator of Nrf2 that may be used to setup antagonist-mode assays. NOTE: Due to acute compound-induced toxicity at treatment concentrations *above* 300 nM, an accurate EC_{50} value cannot be determined for CDDO Im. A 300 nM treatment concentration yields sub-maximal activation of Nrf2, but with a suitably large assay window (see **Figure 2**) and is sub-toxic. Hence, it presents a suitable assay concentration of agonist to be used when screening test compounds for inhibitory activity to Nrf2.

Add *no more than* 300 nM CDDO Im (challenge agonist) to a bulk volume of **CSM**. This medium is then used to prepare serial dilutions of test compounds to achieve the desired respective final assay concentrations. This is an efficient and precise method of setting up Nrf2 antagonist assays, and it is the method presented in *Step 7b* of this protocol.

DAY 1 Assay Protocol: All steps must be performed using aseptic technique.

- **1.)** Remove the **2 tubes** of **Cell Recovery Medium (CRM)** from freezer storage, thaw and equilibrate to 37°C using a water bath.
- **2.) Rapid Thaw of the Reporter Cells:** *First*, retrieve the two tubes of **CRM** from the 37°C water bath and sanitize their outside surfaces with a 70% ethanol swab.

Second, retrieve the tube of **Reporter Cells** from -80°C storage, place it directly into a dry ice bucket and transport the cells to the laminar flow hood. When ready, transfer the tube of reporter cells into a rack and, without delay, perform a rapid thaw of the cells by transferring 9.5 ml from each of the 2 tubes of 37°C CRM into the tube of frozen cells. Place the tube of Reporter Cells in a 37°C water bath for 5 - 10 minutes. The resulting volume of cell suspension will be 21 ml.

- **3.)** Retrieve the tube of Reporter Cell Suspension from the water bath and sanitize the outside surface with a 70% alcohol swab.
- **4.)** Gently invert the tube of Reporter Cells several times to gain a homogenous cell suspension, then transfer the cell suspension into a reservoir. Using an 8-chanel pipette, dispense $200~\mu l$ / well of cell suspension into the assay plate.
 - *NOTE 4.1:* If INDIGO's Live Cell Multiplex Assay is to be incorporated, a minimum of 3 'blank' wells (meaning cell-free but containing 'CSM') must be included in the assay plate to allow quantification of fluorescence background (refer to the LCMA Technical Manual).
 - *NOTE 4.2:* Increased well-to-well variation (= increased standard deviation!) will occur if care is not taken to prevent cells from settling in the reservoir during the dispensing period. Likewise, take care to ensure precision in dispensing exact volumes across the assay plate.
 - *NOTE 4.3:* Users sometimes wish to examine the reporter cells using a microscope. If so, the extra volume of cell suspension provided with each kit may be dispensed into a clear, *collagen-coated* 96-well assay plate. Continue to process the clear plate in identical manner to the white assay plate.
- **5.) Pre-incubate reporter cells.** Place the assay plate into a cell culture incubator (37°C, \geq 70% humidity, 5% CO₂) for 4 6 hours.

- **6.)** Near the end of the pre-incubation period remove **Compound Screening Medium** (**CSM**) from freezer storage and thaw in a 37°C water bath.
- 7.) Prepare the Test Compound and Reference Compound treatment media at the desired final assay concentrations: Use CSM to prepare an appropriate dilution series of the reference and test compound stocks. Prepare treatment media at the desired final assay concentrations. In $Step\ 9$, the prepared treatment media are dispensed at 200 μ l / well into the assay plate. Manage dilution volumes carefully; this assay kit provides 45 ml of CSM.

NOTE: Total DMSO carried over into assay reactions should never exceed 0.4%.

a. Agonist-mode assays. This Nrf2 Assay kit includes a 300 μM stock solution of CDDO-Im, an activator of Nrf2. Note that CDDO-Im concentrations in excess of 300 nM induce significant cytotoxicity. We recommend the following 7-point treatment series, prepared in serial 2-fold decrements, as a suitable dose-response range: 300, 150, 75, 37.5, 18.8, 9.38 and 4.69 nM, and including a 'no treatment' control. *APPENDIX 1* provides an example for generating such a dilution series.

~ or ~

- **b.** Antagonist-mode assays. When setting antagonist assays, first supplement a bulk volume of CSM with the challenge agonist CDDO Im to achieve the desired final assay-concentration (refer to "A word about antagonist-mode assay setup", pg. 8). The agonist-supplemented CSM is then used to generate dilutions of test compound stocks to achieve their final assay concentrations.
- **8.)** At the end of the 4-6 hr pre-culture period, discard the media. The preferred method is to use a 'wrist flick' to eject media into an appropriate waste container. *Gently* tap the inverted plate onto a clean absorbent paper towel to remove residual droplets. Cells will remain tightly adhered to well bottoms.
- 9.) Dispense 200 μl / well of each prepared treatment media into the assay plate.

 NOTE: If well-to-well variation due to 'edge-effects' is a concern this problem may be mitigated by dispensing sterile liquid into the inter-well spaces of the assay plate. Simply remove 1 tip from the 8-chanel dispenser and dispense 100 μl of sterile water into each of the seven inter-well spaces per column of wells.
- **10.**) Transfer the assay plate into a cell culture incubator for <u>22 24 hours</u>.

 NOTE: Ensure a high-humidity (≥70%) environment within the cell culture incubator. This is critical to prevent the onset of deleterious "edge-effects" in the assay plate.
- **11.**) For greater convenience on *Day 2*, retrieve **Detection Substrate** *and* **Detection Buffer** from freezer storage and place them in a dark refrigerator (4°C) to thaw overnight.

- **DAY 2 Assay Protocol:** Subsequent manipulations do *not* require special regard for aseptic technique, and may be performed on a bench top.
- **12.**) 30 minutes before intending to quantify Nrf2 activity, remove **Detection Substrate** and **Detection Buffer** from the refrigerator and place them in a low-light area so that they may equilibrate to room temperature.
 - *NOTE:* Do NOT actively warm Detection Substrate above room temperature. If these solutions were not allowed to thaw overnight at 4°C, a room temperature water bath may be used to expedite thawing.
- 13.) Set the plate-reader to "luminescence" mode. Set the instrument to perform a single $\underline{5}$ second "plate shake" prior to reading the first assay well. Read time may be set to 0.5 second (500 mSec) per well, *or less*.
- **14.**) *Immediately before proceeding to Step 15*, gently invert the tubes of Detection Substrate and Detection Buffer several times to ensure homogenous solutions, then transfer the entire volume of Detection Buffer into the vial of Detection Substrate, thereby generating a <u>12 ml</u> volume of **Luciferase Detection Reagent (LDR)**. Mix gently to avoid foaming.
- **15.)** Following 22 24 hours incubation in treatment media, discard the media contents by manually ejecting it into an appropriate waste container. *Gently* tap the inverted plate onto a clean absorbent paper towel to remove residual droplets. Cells will remain tightly adhered to well bottoms.
- **16.)** Add $\underline{100 \, \mu l}$ of **LDR** to each well of the assay plate. Allow the assay plate to rest at room temperature for at least $\underline{5 \, \text{minutes}}$ following the addition of LDR. Do not shake the assay plate during this period.
- **17.**) Quantify luminescence.

V. Related Products

Human Nrf2 Assay Kit Products				
Product No.	Product Descriptions			
IB10001-32	Human Nrf2 Reporter Assay System 3x 32 assays; 8-well strips in 96-well format plate frame			
IB10001	Human Nrf2 Reporter Assay System 1x 96-well format assays			
IB10002	Human Nrf2 Reporter Assay System 1x 384-well format assays			
Bulk assay reagents may be custom manufactured to accommodate				

any scale of HTS. Please Inquire.

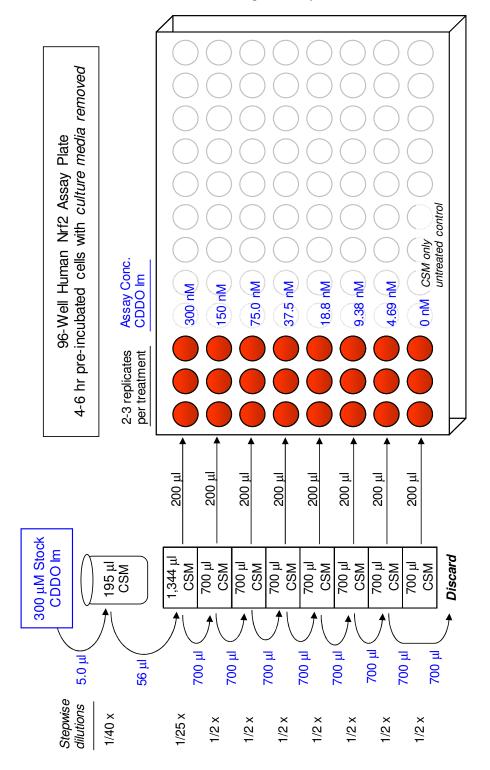
LIVE Cell Multiplex (LCM) Assay Products				
Product No.	Product Descriptions			
LCM-01	Reagent volumes sufficient to perform 96 Live Cell Assays in 1x96-well, or 2x48-well, or 3x32-well assay plate formats			
LCM-05	Reagent in 5x bulk volume to perform 480 Live Cell Assays contained in 5 x 96-well assay plates			
LCM-10	Reagent in 10x bulk volume to perform 960 Live Cell Assays contained in 10 x 96-well assay plates			

Please refer to INDIGO Biosciences website for updated product offerings.

www.indigobiosciences.com

VI. Limited Use Disclosures

Products commercialized by INDIGO Biosciences, Inc. are for RESEARCH PURPOSES ONLY – not for therapeutic, diagnostic, or contact use in humans or animals.


"CryoMite" is a Trademark TM of INDIGO Biosciences, Inc. (State College, PA, USA).

Product prices, availability, specifications, claims and technical protocols are subject to change without prior notice. The printed Technical Manual provided in the kit box will always be the most currently updated version.

Copyright © INDIGO Biosciences, Inc. (State College, PA, USA). All rights reserved.

APPENDIX 1

Example scheme for the serial dilution of CDDO Im reference agonist, and the setup of an Nrf2 dose-response assay.

