View the slide viewer

Have questions about this assay kit?

Human RXRa Reporter Assay Kit

SIZE SKU PRICE
1 x-96 well format assays$910 USD
3 x-32 assays in-96 well format$980 USD
1 x-384 well format assays$2300 USD
SIZE SKU
1 x-96 well format assays
3 x-32 assays in-96 well format
1 x-384 well format assays

Product Description and Product Data

This is an all-inclusive cell-based luciferase reporter assay kit targeting the Human Retinoid X Receptor alpha (RXRa). INDIGO’s RXR Alpha reporter assay utilizes proprietary mammalian cells that have been engineered to provide constitutive expression of the RXR Alpha. In addition to RXR Alpha Reporter Cells, this kit provides two optimized media for use during cell culture and in diluting the user’s test samples, a reference agonist, Luciferase Detection Reagent, and a cell culture-ready assay plate. The principal application of this assay is in the screening of test samples to quantify any functional activity, either agonist or antagonist, that they may exert against human RXR Alpha. This kit provides researchers with clear, reproducible results, exceptional cell viability post-thaw, and consistent results lot to lot. Kits must be stored at -80C. Do not store in liquid nitrogen. Note: reporter cells cannot be refrozen or maintained in extended culture.

Features

  • Clear, Reproducible Results

  • All-Inclusive Assay Systems
  • Exceptional Cell Viability Post-Thaw
  • Consistent Results Lot to Lot

Product Specifications

Target TypeNuclear Hormone Receptor
SpeciesHuman
Receptor FormHybrid
Assay ModeAgonist, Antagonist
Kit Components
  • RXRa Reporter Cells
  • Cell Recovery Medium (CRM)
  • Compound Screening Medium (CSM)
  • 9-cis Retinoic Acid, (ref. agonist; in DMSO)
  • Detection Substrate
  • Detection Buffer
  • White, sterile, cell-culture ready assay plate
Shelf Life6 months
Orthologs AvailableNo
Shipping RequirementsDry Ice
Storage temperature-80C

Data

Agonist and Antagonist dose-response analyses of the Human RXRα. A.) Analyses of RXRα Reporter Cells using the reference agonists 9-cis-Retinoic Acid (provided). B.) Analyses of RXRα antagonist dose-responses using HX531 and UVI3003 (Tocris). Assay setups and quantification of RXRα activity were performed following the protocol provided in the assay Technical Manual. Luminescence was quantified and average relative light units (RLU) and corresponding standard deviation (SD) values were determined for each treatment concentration (n ≥ 4). Values of Fold-activation and Z’ were calculated as described by Zhang, et al. (1999). Non-linear regression and EC50 analyses were performed using GraphPad Prism software. High S/B and Z' scores confirm the robust performance of this RXRα Assay.

Target Background

Retinoid X receptor alpha (RXRα), also known as NR2B1 is a nuclear receptor which in humans is encoded by the RXRA gene. Retinoid X receptors (RXRs) and retinoic acid receptors (RARs), are nuclear receptors that mediate the biological effects of retinoids by their involvement in retinoic acid-mediated gene activation. These receptors exert their action by binding, as homodimers or heterodimers, to specific sequences in the promoters of target genes and regulating their transcription. The protein encoded by this gene is a member of the steroid and thyroid hormone receptor superfamily of transcription factors.

INDIGO’s RXR Alpha Reporter Assay System utilizes mammalian cells engineered to provide constitutive, high-level expression of Human Retinoid X Receptor Alpha (NR2B1), a ligand-dependent transcription factor commonly referred to as RXRA or RXRα. Additionally, these cells contain an RXRα-responsive luciferase reporter gene. Thus, quantifying luciferase activity provides a surrogate measure of RXRα activity in the treated reporter cells.

Citations

Retinoic acid (RA, 1), an oxidized form of vitamin A, binds to retinoic acid receptors (RAR) and retinoid X receptors (RXR) to regulate gene expression and has important functions such as cell proliferation and differentiation. Synthetic ligands regarding RAR and RXR have been devised for the treatment of various diseases, particularly promyelocytic leukemia, but their side effects have led to the development of new, less toxic therapeutic agents. Fenretinide (4-HPR, 2), an aminophenol derivative of RA, exhibits potent antiproliferative activity without binding to RAR/RXR, but its clinical trial was discontinued due to side effects of impaired dark adaptation. Assuming that the cyclohexene ring of 4-HPR is the cause of the side effects, methylaminophenol was discovered through structure–activity relationship research, and p-dodecylaminophenol (p-DDAP, 3), which has no side effects or toxicity and is effective against a wide range of cancers, was developed. Therefore, we thought that introducing the motif carboxylic acid found in retinoids, could potentially enhance the anti-proliferative effects. Introducing chain terminal carboxylic functionality into potent p-alkylaminophenols significantly attenuated antiproliferative potencies, while a similar structural modification of weakly potent p-acylaminophenols enhanced growth inhibitory potencies. However, conversion of the carboxylic acid moieties to their methyl esters completely abolished the cell growth inhibitory effects of both series. Insertion of a carboxylic acid moiety, which is important for binding to RA receptors, abolishes the action of p-alkylaminophenols, but enhances the action of p-acylaminophenols. This suggests that the amido functionality may be important for the growth inhibitory effects of the carboxylic acids.
2023-02-24
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphate flame retardant. The primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), is detectable in the urine of over 90 % of Americans. Epidemiological studies show sex-specific associations between urinary BDCPP levels and metabolic syndrome, which is an established risk factor for type 2 diabetes, heart disease, and stroke. We used a mouse model to determine whether TDCPP exposure disrupts glucose homeostasis. Six-week old male and female C57BL/6J mice were given ad libitum access to diets containing vehicle (0.1 % DMSO) and TDCPP resulting in the following treatment groups: 0 mg/kg/day, 0.02 mg/kg/day, 1 mg/kg/day, or 100 mg/kg/day. After being on the experimental diet for five weeks without interruption, body composition was analyzed, glucose and insulin tolerance tests were performed, and fasting glucose and insulin levels were quantified. TDCPP at 100 mg/kg/day caused male sex-specific adiposity, fasting hyperglycemia, and insulin resistance. TDCPP-induced modulation of nuclear receptor activation was investigated using an in vitro screen to identify potential mechanisms of metabolic disruption. TDCPP activated farnesoid X receptor (FXR) and pregnane X receptor (PXR), and inhibited the androgen receptor (AR). PXR target genes, but not FXR target genes, were upregulated in livers from mice exposed to 100 mg TDCPP/kg/day. Interestingly, PXR target genes were differentially expressed in livers from both males and females. It remains to be determined whether TDCPP-induced metabolic disruption occurs via modulation of nuclear receptor activity. Taken together, these studies build upon the association of TDCPP exposure and metabolic syndrome in humans by identifying sex-specific effects of TDCPP on glucose homeostasis in mice.
2022-12-07

Also available as a service

Retinoid X Receptor Alpha (RXRa, NR2B1)

Have questions about this assay kit?